Yahoo - NHL
2018-04-16
Filter Players
Apply filters
Line
Power Play Unit
Projected Score
Salary
Value
Consistency
  • ALL
  • W
  • C
  • D
  • G
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Status / Line PP Unit Goals Win % Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
John Gibson
G ANA @ SJ confirm 2.73 41.7% 37 29.0 11.4 10.90 10.90 % % 66 2.95 -0.5
Pekka Rinne
G NSH @ COL confirm 2.47 59.2% 36 33.0 12.3 14.07 14.07 % % 71 3.91 -2.5
Martin Jones
G SJ vs ANA confirm 2.27 58.3% 35 29.0 10.5 12.80 12.80 % % 64 3.66 26.5 757.1
Nikita Kucherov
W TB @ NJ 1 1 3.18 55.6% 34 35.0 9.0 11.85 11.85 % % 58 3.49 8.0 235.3
Andrei Vasilevskiy
G TB @ NJ prob 2.82 55.6% 33 31.5 12.2 12.67 12.67 % % 70 3.84 12.0 363.6
Tuukka Rask
G BOS @ TOR confirm 2.82 47.6% 33 29.0 11.5 11.17 11.17 % % 67 3.39 5.0 151.5
Taylor Hall
W NJ vs TB 1 1 2.82 44.4% 32 30.0 8.2 12.55 12.55 % % 57 3.92 28.0 875
Brad Marchand
W BOS @ TOR 1 1 2.68 47.6% 32 42.0 8.0 9.73 9.73 % % 52 3.04 -2.0
Nathan MacKinnon
C COL vs NSH 1 1 2.47 40.8% 32 41.0 7.7 10.52 10.52 % % 51 3.29 26.0 812.5
Steven Stamkos
C TB @ NJ 1 1 3.18 55.6% 30 37.0 8.3 8.15 8.15 % % 54 2.72 11.0 366.7
Patrice Bergeron
C BOS @ TOR 1 1 2.68 47.6% 30 44.0 8.1 5.78 5.78 % % 57 1.93 0.0
Auston Matthews
C TOR vs BOS 1 2 2.82 52.4% 30 36.0 8.7 10.01 10.01 % % 58 3.34 12.0 400
Brent Burns
D SJ vs ANA 1 1 2.73 58.3% 29 30.0 9.6 9.74 9.74 % % 67 3.36 4.0 137.9
Louis Domingue
G TB @ NJ 2.82 55.6% 28 24.0 9.4 10.74 10.74 % % 62 3.84
Victor Hedman
D TB @ NJ 1 1 3.18 55.6% 27 28.0 8.0 11.41 11.41 % % 60 4.23 3.0 111.1
David Pastrnak
W BOS @ TOR 1 1 2.68 47.6% 27 46.0 7.7 11.40 11.40 % % 52 4.22 0.0
Filip Forsberg
W NSH @ COL 1 1 3.03 59.2% 26 36.0 7.6 10.55 10.55 % % 53 4.06 10.0 384.6
Rickard Rakell
W ANA @ SJ 1 1 2.27 41.7% 26 31.0 6.0 7.01 7.01 % % 46 2.7 12.0 461.5
Roman Josi
D NSH @ COL 1 2 3.03 59.2% 25 28.0 8.4 10.47 10.47 % % 65 4.19 4.0 160
Viktor Arvidsson
W NSH @ COL 1 1 3.03 59.2% 25 34.0 6.8 10.10 10.10 % % 53 4.04 -3.0
Mikko Rantanen
W COL vs NSH 1 1 2.47 40.8% 25 32.0 5.8 7.68 7.68 % % 38 3.07 17.0 680
Frederik Andersen
G TOR vs BOS confirm 2.68 52.4% 24 31.0 12.2 11.54 11.54 % % 68 4.81 22.0 916.7
Jonathan Bernier
G COL vs NSH confirm 3.03 40.8% 24 31.5 9.9 8.30 8.30 % % 59 3.46 14.5 604.2
Mitchell Marner
W TOR vs BOS 2 1 2.82 52.4% 23 36.0 6.7 9.97 9.97 % % 48 4.34 13.0 565.2
P.K. Subban
D NSH @ COL 2 1 3.03 59.2% 23 29.0 7.4 8.05 8.05 % % 60 3.5 2.0 87
Tyson Barrie
D COL vs NSH 1 1 2.47 40.8% 23 31.0 6.1 8.02 8.02 % % 48 3.49 9.0 391.3
Ryan Getzlaf
C ANA @ SJ 1 1 2.27 41.7% 23 32.0 8.2 6.44 6.44 % % 58 2.8 5.0 217.4
Torey Krug
D BOS @ TOR 2 1 2.68 47.6% 22 31.0 6.7 8.43 8.43 % % 58 3.83 -1.0
James van Riemsdyk
W TOR vs BOS 3 1 2.82 52.4% 22 35.0 6.9 9.09 9.09 % % 50 4.13 8.0 363.6
Ryan Ellis
D NSH @ COL 1 2 3.03 59.2% 22 25.0 6.8 11.38 11.38 % % 59 5.17 5.0 227.3
Joe Pavelski
W SJ vs ANA 1 1 2.73 58.3% 22 32.0 8.6 9.81 9.81 % % 60 4.46 20.0 909.1
Evander Kane
W SJ vs ANA 1 2 2.73 58.3% 22 35.0 7.1 8.85 8.85 % % 52 4.02 17.0 772.7
Brayden Point
C TB @ NJ 2 2 3.18 55.6% 21 27.0 6.8 9.18 9.18 % % 54 4.37 -2.0
Morgan Rielly
D TOR vs BOS 1 1 2.82 52.4% 21 30.0 5.3 6.73 6.73 % % 50 3.21 14.0 666.7
Logan Couture
W SJ vs ANA 2 1 2.73 58.3% 21 34.0 7.6 7.77 7.77 % % 55 3.7 23.0 1095.2
Peter Budaj
G TB @ NJ 2.82 55.6% 20 29.5 7.7 6.27 6.27 % % 54 3.14 0.0
J.T. Miller
W TB @ NJ 1 1 3.18 55.6% 20 30.0 5.2 6.92 6.92 % % 42 3.46 -3.0
Alex Killorn
W TB @ NJ 3 1 3.18 55.6% 20 34.0 5.3 7.59 7.59 % % 45 3.8 11.0 550
Cory Schneider
G NJ vs TB confirm 3.18 44.4% 20 29.0 10.6 7.06 7.06 % % 67 3.53 19.0 950
Gabriel Landeskog
W COL vs NSH 1 1 2.47 40.8% 20 38.0 6.4 6.60 6.60 % % 48 3.3 25.0 1250
Ryan McDonagh
D TB @ NJ 2 2 3.18 55.6% 19 24.0 6.3 3.86 3.86 % % 58 2.03 1.0 52.6
Tyler Johnson
C TB @ NJ 2 2 3.18 55.6% 19 33.0 6.9 5.88 5.88 % % 50 3.1 1.0 52.6
Kyle Palmieri
W NJ vs TB 1 1 2.82 44.4% 19 25.0 6.4 8.23 8.23 % % 53 4.33 10.0 526.3
Rick Nash
W BOS @ TOR 2 1 2.68 47.6% 19 33.0 7.2 3.38 3.38 % % 55 1.78 4.0 210.5
David Krejci
C BOS @ TOR 2 2 2.68 47.6% 19 27.0 5.9 5.95 5.95 % % 50 3.13 1.0 52.6
Ryan Donato
C BOS @ TOR 2.68 47.6% 19 0.00 4.6 0.00 0.00 % % 41 0.00 0.0
Craig Smith
W NSH @ COL 2 1 3.03 59.2% 19 28.0 5.7 8.96 8.96 % % 48 4.72 -2.0
Yanni Gourde
W TB @ NJ 3 2 3.18 55.6% 18 27.0 6.2 8.11 8.11 % % 46 4.51 1.0 55.6
Will Butcher
D NJ vs TB 3 1 2.82 44.4% 18 17.0 4.4 4.22 4.22 % % 44 2.34 8.0 444.4
Jake DeBrusk
W BOS @ TOR 2 2 2.68 47.6% 18 24.0 5.1 4.45 4.45 % % 38 2.47 0.0
William Nylander
C TOR vs BOS 1 2 2.82 52.4% 18 28.0 6.4 7.12 7.12 % % 51 3.96 8.0 444.4
Patrick Eaves
W ANA @ SJ 2.27 41.7% 18 0.00 5.8 0.00 0.00 % % 48 0.00
Joe Thornton
C SJ vs ANA 2.73 58.3% 18 0.00 5.8 0.00 0.00 % % 51 0.00 0.0
Ondrej Palat
W TB @ NJ 2 2 3.18 55.6% 17 30.0 6.6 7.04 7.04 % % 52 4.14 0.0
Sami Vatanen
D NJ vs TB 1 2 2.82 44.4% 17 24.0 5.9 7.17 7.17 % % 57 4.22 7.0 411.8
David Backes
W BOS @ TOR 3 2 2.68 47.6% 17 36.0 6.2 3.88 3.88 % % 48 2.28 4.0 235.3
Jake Gardiner
D TOR vs BOS 2 2 2.82 52.4% 17 24.0 4.6 7.01 7.01 % % 43 4.12 5.0 294.1
Tyler Bozak
C TOR vs BOS 3 1 2.82 52.4% 17 31.0 5.1 6.45 6.45 % % 37 3.79 7.0 411.8
Kyle Turris
C NSH @ COL 2 2 3.03 59.2% 17 25.0 6.1 7.22 7.22 % % 53 4.25 -4.0
Ryan Johansen
C NSH @ COL 1 1 3.03 59.2% 17 27.0 6.4 7.87 7.87 % % 51 4.63 6.0 352.9
Erik Johnson
D COL vs NSH 2.47 40.8% 17 0.00 6.4 0.00 0.00 % % 56 0.00 0.0
Cam Fowler
D ANA @ SJ 2.27 41.7% 17 0.00 5.4 0.00 0.00 % % 53 0.00 0.0
Adam Henrique
C ANA @ SJ 3 1 2.27 41.7% 17 26.0 5.5 5.81 5.81 % % 44 3.42 2.0 117.6
Jakob Silfverberg
W ANA @ SJ 2 2 2.27 41.7% 17 38.0 6.2 5.22 5.22 % % 50 3.07 0.0
Josh Manson
D ANA @ SJ 1 2.27 41.7% 17 24.0 4.0 4.51 4.51 % % 46 2.65 2.0 117.6
Hampus Lindholm
D ANA @ SJ 1 2 2.27 41.7% 17 30.0 5.3 5.45 5.45 % % 51 3.21 -5.0
Marc-Edouard Vlasic
D SJ vs ANA 2 2 2.73 58.3% 17 26.0 6.1 6.10 6.10 % % 55 3.59 17.0 1000
Tomas Hertl
C SJ vs ANA 2 1 2.73 58.3% 17 29.0 5.4 6.33 6.33 % % 48 3.72 12.0 705.9
Timo Meier
W SJ vs ANA 3 2 2.73 58.3% 17 22.0 4.9 6.57 6.57 % % 49 3.87 15.0 882.4
Nico Hischier
C NJ vs TB 1 2 2.82 44.4% 16 22.0 6.0 7.07 7.07 % % 48 4.42 3.0 187.5
Kevan Miller
D BOS @ TOR 2 2.68 47.6% 16 16.0 3.7 4.55 4.55 % % 46 2.84 -3.0
Patrick Marleau
W TOR vs BOS 2 2 2.82 52.4% 16 38.0 5.8 6.73 6.73 % % 47 4.21 18.0 1125
Austin Watson
W NSH @ COL 3 3.03 59.2% 16 26.0 3.3 5.86 5.86 % % 33 3.66 12.0 750
Kevin Fiala
W NSH @ COL 2 2 3.03 59.2% 16 24.0 5.3 6.58 6.58 % % 45 4.11 -6.0
Corey Perry
W ANA @ SJ 3 1 2.27 41.7% 16 31.0 6.9 5.11 5.11 % % 48 3.19 1.0 62.5
Andrew Cogliano
W ANA @ SJ 2 2.27 41.7% 16 25.0 4.3 4.96 4.96 % % 42 3.1 3.0 187.5
Anthony Cirelli
C TB @ NJ 3 3.18 55.6% 15 24.0 5.6 6.62 6.62 % % 27 4.41 1.0 66.7
Travis Zajac
C NJ vs TB 3 1 2.82 44.4% 15 28.0 4.3 5.10 5.10 % % 33 3.4 6.0 400
Blake Coleman
C NJ vs TB 3 2.82 44.4% 15 20.0 3.7 5.38 5.38 % % 39 3.59 16.0 1066.7
Zdeno Chara
D BOS @ TOR 1 2.68 47.6% 15 24.0 5.6 3.74 3.74 % % 54 2.49 19.0 1266.7
Danton Heinen
C BOS @ TOR 3 2.68 47.6% 15 21.0 4.8 3.41 3.41 % % 42 2.27 2.0 133.3
Zach Hyman
W TOR vs BOS 1 2.82 52.4% 15 21.0 4.7 5.18 5.18 % % 49 3.45 6.0 400
Ryan Kesler
C ANA @ SJ 2 2 2.27 41.7% 15 30.0 6.3 3.15 3.15 % % 50 2.1 1.0 66.7
Justin Braun
D SJ vs ANA 2 2.73 58.3% 15 29.0 4.6 5.35 5.35 % % 52 3.57 6.0 400
Joonas Donskoi
W SJ vs ANA 1 2 2.73 58.3% 15 27.0 4.0 3.61 3.61 % % 39 2.41 22.0 1466.7
Patrick Maroon
W NJ vs TB 2 1 2.82 44.4% 14 30.0 4.6 3.59 3.59 % % 37 2.56 4.0 285.7
Steve Santini
D NJ vs TB 2.82 44.4% 14 0.00 3.0 0.00 0.00 % % 38 0.00 0.0
Riley Nash
C BOS @ TOR 3 2.68 47.6% 14 27.0 3.7 4.78 4.78 % % 35 3.41 4.0 285.7
Charlie McAvoy
D BOS @ TOR 1 2 2.68 47.6% 14 21.0 4.4 2.74 2.74 % % 41 1.96 9.0 642.9
Francois Beauchemin
D ANA @ SJ 2 2.27 41.7% 14 24.0 5.1 2.89 2.89 % % 51 2.06 -3.0
Brandon Montour
D ANA @ SJ 2 1 2.27 41.7% 14 21.0 5.3 4.08 4.08 % % 56 2.91 11.0 785.7
Eric Fehr
C SJ vs ANA 4 2.73 58.3% 14 26.0 3.7 2.49 2.49 % % 36 1.78 11.0 785.7
Mikkel Boedker
W SJ vs ANA 2 2 2.73 58.3% 14 33.0 4.3 5.82 5.82 % % 30 4.16 8.0 571.4
Brenden Dillon
D SJ vs ANA 3 2.73 58.3% 14 18.0 2.9 4.50 4.50 % % 36 3.21 5.0 357.1
Barclay Goodrow
C SJ vs ANA 2.73 58.3% 14 0.00 2.3 0.00 0.00 % % 14 0.00 0.0
Anton Stralman
D TB @ NJ 2 3.18 55.6% 13 24.0 4.9 5.25 5.25 % % 52 4.04 -3.0
Mikhail Sergachev
D TB @ NJ 3 3.18 55.6% 13 19.0 5.0 5.13 5.13 % % 50 3.95 2.0 153.8
Miles Wood
W NJ vs TB 4 2.82 44.4% 13 35.0 3.7 3.59 3.59 % % 22 2.76 0.0
Calle Jarnkrok
C NSH @ COL 3.03 59.2% 13 0.00 3.5 0.00 0.00 % % 28 0.00 0.0
Mattias Ekholm
D NSH @ COL 2 3.03 59.2% 13 21.0 4.8 6.58 6.58 % % 49 5.06 7.0 538.5
Blake Comeau
W COL vs NSH 3 2.47 40.8% 13 26.0 3.7 3.79 3.79 % % 32 2.92 9.0 692.3
Carl Soderberg
C COL vs NSH 3 2.47 40.8% 13 26.0 4.5 4.57 4.57 % % 39 3.52 9.0 692.3
Ondrej Kase
W ANA @ SJ 1 2 2.27 41.7% 13 23.0 4.3 4.62 4.62 % % 34 3.55 4.0 307.7
Joakim Ryan
D SJ vs ANA 2.73 58.3% 13 0.00 3.2 0.00 0.00 % % 32 0.00 0.0
Dan Girardi
D TB @ NJ 1 3.18 55.6% 12 19.0 4.9 4.61 4.61 % % 58 3.84 2.0 166.7
Marcus Johansson
W NJ vs TB 2 2.82 44.4% 12 25.0 5.0 2.25 2.25 % % 41 1.88 2.0 166.7
Stefan Noesen
W NJ vs TB 3 2.82 44.4% 12 20.0 3.6 5.13 5.13 % % 36 4.28 11.0 916.7
Adam McQuaid
D BOS @ TOR 3 2.68 47.6% 12 16.0 3.0 2.27 2.27 % % 45 1.89 13.0 1083.3
Mark Barberio
D COL vs NSH 2 2.47 40.8% 12 14.0 3.0 4.01 4.01 % % 38 3.34 9.0 750
Nikita Zadorov
D COL vs NSH 1 2.47 40.8% 12 19.0 2.9 4.38 4.38 % % 30 3.65 8.0 666.7
Dylan DeMelo
D SJ vs ANA 3 2.73 58.3% 12 23.0 2.7 3.85 3.85 % % 26 3.21 4.0 333.3
Kevin Labanc
W SJ vs ANA 3 1 2.73 58.3% 12 24.0 4.0 4.46 4.46 % % 37 3.72 7.0 583.3
Ryan Callahan
W TB @ NJ 3.18 55.6% 11 0.00 4.6 0.00 0.00 % % 39 0.00 0.0
Jake Dotchin
D TB @ NJ 3.18 55.6% 11 0.00 2.9 0.00 0.00 % % 31 0.00 0.0
Michael Grabner
W NJ vs TB 2.82 44.4% 11 0.00 4.7 0.00 0.00 % % 35 0.00 0.0
Ben Lovejoy
D NJ vs TB 3 2.82 44.4% 11 20.0 3.4 3.13 3.13 % % 46 2.85 14.0 1272.7
John Moore
D NJ vs TB 2 2 2.82 44.4% 11 18.0 3.8 4.39 4.39 % % 42 3.99 2.0 181.8
Ron Hainsey
D TOR vs BOS 1 2.82 52.4% 11 17.0 3.7 3.77 3.77 % % 45 3.43 11.0 1000
Connor Carrick
D TOR vs BOS 2.82 52.4% 11 0.00 2.6 0.00 0.00 % % 27 0.00 0.0
Travis Dermott
D TOR vs BOS 3 2.82 52.4% 11 22.0 4.2 3.95 3.95 % % 47 3.59 -1.0
Colton Sissons
C NSH @ COL 3 2 3.03 59.2% 11 29.0 3.1 4.76 4.76 % % 23 4.33 9.0 818.2
Patrik Nemeth
D COL vs NSH 2 2.47 40.8% 11 20.0 3.9 4.44 4.44 % % 44 4.04 14.0 1272.7
David Warsofsky
D COL vs NSH 3 2 2.47 40.8% 11 9.0 2.6 2.34 2.34 % % 48 2.13 0.0
Nick Ritchie
W ANA @ SJ 3 2.27 41.7% 11 19.0 3.5 3.55 3.55 % % 36 3.23 1.0 90.9
Jannik Hansen
W SJ vs ANA 2.73 58.3% 11 0.00 3.7 0.00 0.00 % % 26 0.00 0.0
Chris Kunitz
W TB @ NJ 4 3.18 55.6% 10 25.0 4.6 3.98 3.98 % % 41 3.98 0.0
Braydon Coburn
D TB @ NJ 3 3.18 55.6% 10 18.0 3.0 3.02 3.02 % % 41 3.02 0.0
Cory Conacher
W TB @ NJ 4 3.18 55.6% 10 16.0 2.2 1.15 1.15 % % 10 1.15 0.0
Slater Koekkoek
D TB @ NJ 3.18 55.6% 10 0.00 1.6 0.00 0.00 % % 0 0.00 0.0
Cedric Paquette
C TB @ NJ 4 3.18 55.6% 10 29.0 2.5 2.82 2.82 % % 13 2.82 1.0 100
Andrej Sustr
D TB @ NJ 3.18 55.6% 10 0.00 2.5 0.00 0.00 % % 26 0.00 0.0
Adam Erne
W TB @ NJ 3.18 55.6% 10 0.00 1.9 0.00 0.00 % % 0 0.00 0.0
Brian Boyle
C NJ vs TB 4 2 2.82 44.4% 10 24.0 3.7 1.93 1.93 % % 37 1.93 5.0 500
Drew Stafford
W NJ vs TB 4 2.82 44.4% 10 30.0 3.7 0.91 0.91 % % 27 0.91 2.0 200
Andy Greene
D NJ vs TB 1 2.82 44.4% 10 21.0 3.9 3.66 3.66 % % 48 3.66 14.0 1400
Jimmy Hayes
W NJ vs TB 2.82 44.4% 10 0.00 2.8 0.00 0.00 % % 9 0.00 0.0
Brian Gibbons
W NJ vs TB 2.82 44.4% 10 0.00 4.3 0.00 0.00 % % 39 0.00 0.0
Damon Severson
D NJ vs TB 2 2.82 44.4% 10 21.0 3.1 3.23 3.23 % % 26 3.23 3.0 300
Mirco Mueller
D NJ vs TB 2.82 44.4% 10 0.00 1.8 0.00 0.00 % % 8 0.00 0.0
Pavel Zacha
C NJ vs TB 2 2.82 44.4% 10 18.0 3.0 2.74 2.74 % % 25 2.74 2.0 200
Jesper Bratt
W NJ vs TB 2 2.82 44.4% 10 25.0 3.2 0.00 0.00 % % 14 0 0.0
Brian Gionta
W BOS @ TOR 2.68 47.6% 10 0.00 4.5 0.00 0.00 % % 39 0.00 0.0
Nick Holden
D BOS @ TOR 3 2 2.68 47.6% 10 18.0 3.6 2.14 2.14 % % 41 2.14 6.0 600
Tommy Wingels
C BOS @ TOR 2.68 47.6% 10 0.00 3.1 0.00 0.00 % % 26 0.00 0.0
Sean Kuraly
C BOS @ TOR 4 2.68 47.6% 10 23.0 2.7 1.54 1.54 % % 22 1.54 14.0 1400
Matt Grzelcyk
D BOS @ TOR 2.68 47.6% 10 0.00 3.6 0.00 0.00 % % 42 0.00 0.0
Tim Schaller
W BOS @ TOR 4 2.68 47.6% 10 19.0 3.1 2.77 2.77 % % 36 2.77 8.0 800
Noel Acciari
C BOS @ TOR 4 2.68 47.6% 10 13.0 2.1 2.11 2.11 % % 17 2.11 4.0 400
Brandon Carlo
D BOS @ TOR 2.68 47.6% 10 0.00 3.0 0.00 0.00 % % 34 0.00 0.0
Anders Bjork
W BOS @ TOR 2.68 47.6% 10 0.00 3.1 0.00 0.00 % % 10 0.00
Dominic Moore
C TOR vs BOS 4 2.82 52.4% 10 18.0 2.7 1.02 1.02 % % 26 1.02 0.0
Tomas Plekanec
C TOR vs BOS 2 2.82 52.4% 10 28.0 5.5 3.03 3.03 % % 48 3.03 10.0 1000
Roman Polak
D TOR vs BOS 3 2.82 52.4% 10 18.0 3.3 3.70 3.70 % % 40 3.7 5.0 500
Matt Martin
W TOR vs BOS 2.82 52.4% 10 0.00 2.0 0.00 0.00 % % 12 0.00 0.0
Josh Leivo
W TOR vs BOS 2.82 52.4% 10 0.00 1.7 0.00 0.00 % % 0 0.00 0.0
Leo Komarov
W TOR vs BOS 2.82 52.4% 10 0.00 3.8 0.00 0.00 % % 32 0.00 0.0
Connor Brown
W TOR vs BOS 3 2.82 52.4% 10 34.0 4.1 4.05 4.05 % % 34 4.05 1.0 100
Kasperi Kapanen
W TOR vs BOS 4 2 2.82 52.4% 10 20.0 2.0 2.18 2.18 % % 3 2.18 -1.0
Nikita Zaitsev
D TOR vs BOS 2 2.82 52.4% 10 21.0 4.2 2.33 2.33 % % 40 2.33 1.0 100
Joffrey Lupul
W TOR vs BOS 2.82 52.4% 10 0.00 3.8 0.00 0.00 % % 29 0.00
Mike Fisher
C NSH @ COL 4 3.03 59.2% 10 24.0 4.8 2.34 2.34 % % 46 2.34 1.0 100
Scott Hartnell
W NSH @ COL 3.03 59.2% 10 0.00 5.0 0.00 0.00 % % 38 0.00 0.0
Yannick Weber
D NSH @ COL 3.03 59.2% 10 0.00 2.5 0.00 0.00 % % 26 0.00 0.0
Nick Bonino
C NSH @ COL 3 3.03 59.2% 10 35.0 5.3 4.58 4.58 % % 46 4.58 4.0 400
Matt Irwin
D NSH @ COL 3 3.03 59.2% 10 19.0 3.3 0.95 0.95 % % 42 0.95 3.0 300
Anthony Bitetto
D NSH @ COL 3.03 59.2% 10 0.00 1.5 0.00 0.00 % % 9 0.00 0.0
Alexei Emelin
D NSH @ COL 3 3.03 59.2% 10 18.0 3.2 2.04 2.04 % % 40 2.04 1.0 100
Miikka Salomaki
W NSH @ COL 4 3.03 59.2% 10 16.0 1.6 0.68 0.68 % % 2 0.68 2.0 200
Ryan Hartman
W NSH @ COL 4 3.03 59.2% 10 35.0 4.2 4.01 4.01 % % 35 4.01 2.0 200
Eeli Tolvanen
W NSH @ COL 3.03 59.2% 10 0.00 0.6 0.00 0.00 % % 13 0.00 0.0
Colin Wilson
W COL vs NSH 4 2 2.47 40.8% 10 27.0 4.4 1.85 1.85 % % 37 1.85 3.0 300
Mark Alt
D COL vs NSH 2.47 40.8% 10 0.00 0.5 0.00 0.00 % % 0 0.00 0.0
Matthew Nieto
W COL vs NSH 3 2.47 40.8% 10 30.0 3.2 3.64 3.64 % % 24 3.64 6.0 600
Nail Yakupov
W COL vs NSH 2.47 40.8% 10 0.00 3.1 0.00 0.00 % % 23 0.00 0.0
Alexander Kerfoot
C COL vs NSH 2 2 2.47 40.8% 10 27.0 4.0 3.42 3.42 % % 27 3.42 1.0 100
Sven Andrighetto
W COL vs NSH 2 2 2.47 40.8% 10 23.0 3.8 2.81 2.81 % % 33 2.81 1.0 100
J.T. Compher
C COL vs NSH 4 2 2.47 40.8% 10 20.0 3.8 1.54 1.54 % % 36 1.54 7.0 700
Anton Lindholm
D COL vs NSH 2.47 40.8% 10 0.00 1.3 0.00 0.00 % % 5 0.00 0.0
Tyson Jost
C COL vs NSH 2 1 2.47 40.8% 10 20.0 3.3 3.36 3.36 % % 26 3.36 3.0 300
Samuel Girard
D COL vs NSH 2.47 40.8% 10 0.00 3.0 0.00 0.00 % % 29 0.00 0.0
Vladislav Kamenev
C COL vs NSH 2.47 40.8% 10 0.00 -0.2 0.00 0.00 % % 0 0.00 0.0
Gabriel Bourque
W COL vs NSH 4 2.47 40.8% 10 20.0 2.2 2.07 2.07 % % 15 2.07 9.0 900
Duncan Siemens
D COL vs NSH 3 2.47 40.8% 10 9.0 1.0 1.23 1.23 % % 0 1.23 -2.0
Dominic Toninato
C COL vs NSH 2.47 40.8% 10 0.00 1.0 0.00 0.00 % % 15 0.00 0.0
Jason Chimera
W ANA @ SJ 2.27 41.7% 10 0.00 3.2 0.00 0.00 % % 23 0.00 -2.0
Antoine Vermette
C ANA @ SJ 4 2.27 41.7% 10 27.0 3.5 0.14 0.14 % % 23 0.14 0.0
Chris Kelly
C ANA @ SJ 2.27 41.7% 10 0.00 2.7 0.00 0.00 % % 24 0.00 0.0
Derek Grant
C ANA @ SJ 4 2.27 41.7% 10 21.0 2.3 2.24 2.24 % % 18 2.24 4.0 400
Andy Welinski
D ANA @ SJ 2.27 41.7% 10 0.00 1.0 0.00 0.00 % % 0 0.00 2.0 200
J.T. Brown
W ANA @ SJ 4 2.27 41.7% 10 22.0 2.3 0.14 0.14 % % 23 0.14 -2.0
Marcus Pettersson
D ANA @ SJ 3 2 2.27 41.7% 10 12.0 2.8 2.36 2.36 % % 41 2.36 3.0 300
Troy Terry
W ANA @ SJ 2.27 41.7% 10 0.00 0.3 0.00 0.00 % % 0 0.00 0.0
Kevin Bieksa
D ANA @ SJ 3 2.27 41.7% 10 16.0 3.4 1.70 1.70 % % 43 1.7 0.0
Paul Martin
D SJ vs ANA 1 2.73 58.3% 10 20.0 3.6 1.63 1.63 % % 41 1.63 4.0 400
Joel Ward
W SJ vs ANA 2.73 58.3% 10 0.00 3.9 0.00 0.00 % % 34 0.00 0.0
Marcus Sorensen
W SJ vs ANA 4 2.73 58.3% 10 11.0 2.0 1.74 1.74 % % 11 1.74 16.0 1600
Chris Tierney
C SJ vs ANA 3 2.73 58.3% 10 23.0 3.5 4.46 4.46 % % 28 4.46 6.0 600
Melker Karlsson
W SJ vs ANA 4 2.73 58.3% 10 26.0 3.8 2.45 2.45 % % 38 2.45 9.0 900
Maxim Letunov
C SJ vs ANA 2.73 58.3% 10 0.00 0.0 0.00 0.00 % % 0 0.00 0.0
Dylan Gambrell
C SJ vs ANA 2.73 58.3% 10 0.00 0.1 0.00 0.00 % % 0 0.00 0.0
Jared Boll
W ANA @ SJ 2.27 41.7% 10 0.00 0.6 0.00 0.00 % % 0 0.00
Korbinian Holzer
D ANA @ SJ 2.27 41.7% 10 0.00 1.5 0.00 0.00 % % 0 0.00 0.0
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $200 if left blank.

Offensive Players vs Goalie

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
BOS
@
TOR
TB
@
NJ
NSH
@
COL
ANA
@
SJ
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team and same Line or PP unit (otherwise known as stacking) this is where to do it. You can add a single stack with the remaining players not needing to be from the same team/line/PP Unit, or you can add multiple stacks per lineup so that all of the players are paired with other players from the same team/line/PP Unit.

To get started, click on the Add Stack link. You will need to select how many players you want used in the stack, which Line/PP units you want possibly stacked and which teams you would like possibly used for the first stack.

You can select multiple Lines/PP Units, or leave this blank and it will just stack players from the same team. You can also choose to stack only Forwards (Centers and Wings) or allow all positions (Centers, Wings and Defense Men) to be stacked.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 skaters from 1 team, and 4 skaters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.