Yahoo - NHL
2017-05-22
Filter Players
Apply filters
Line
Power Play Unit
Projected Score
Salary
Value
Consistency
  • ALL
  • W
  • C
  • D
  • G
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Status / Line PP Unit Goals Win % Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
Matt Murray
G PIT @ OTT prob 0.00 56.5% 37 26.0 13.0 13.97 13.97 % % 73 3.78
Pekka Rinne
G NSH vs ANA prob 0.00 60% 37 33.0 11.7 14.13 14.13 % % 70 3.82
Sidney Crosby
C PIT @ OTT 1 1 0.00 56.5% 33 36.0 9.2 9.39 9.39 % % 56 2.85
Juuse Saros
G NSH vs ANA 0.00 60% 31 25.0 11.9 0.00 0.00 % % 72 0
Marc-Andre Fleury
G PIT @ OTT prob 0.00 56.5% 30 28.0 12.1 0.00 0.00 % % 70 0
Evgeni Malkin
C PIT @ OTT 2 1 0.00 56.5% 30 31.0 9.0 10.43 10.43 % % 60 3.48
Craig Anderson
G OTT vs PIT prob 0.00 43.5% 30 28.5 13.0 11.71 11.71 % % 71 3.9
Erik Karlsson
D OTT vs PIT 1 1 0.00 43.5% 30 31.0 9.5 9.42 9.42 % % 63 3.14
John Gibson
G ANA @ NSH prob 0.00 40% 30 29.0 11.3 11.85 11.85 % % 67 3.95
Ryan Getzlaf
C ANA @ NSH 1 1 0.00 40% 27 32.0 8.3 9.25 9.25 % % 59 3.43
Jonathan Bernier
G ANA @ NSH 0.00 40% 27 31.5 10.1 0.00 0.00 % % 60 0
Mike Condon
G OTT vs PIT 0.00 43.5% 26 31.0 9.4 0.00 0.00 % % 60 0
Phil Kessel
W PIT @ OTT 2 1 0.00 56.5% 25 36.0 7.5 8.53 8.53 % % 54 3.41
Matt O'Connor
G OTT vs PIT 0.00 43.5% 25 7.0 7.0 0.00 0.00 % % 0 0
Filip Forsberg
W NSH vs ANA 1 1 0.00 60% 25 36.0 7.4 8.08 8.08 % % 52 3.23
Kris Letang
D PIT @ OTT 0.00 56.5% 24 0.00 9.0 0.00 0.00 % % 64 0.00
Viktor Arvidsson
W NSH vs ANA 1 1 0.00 60% 24 34.0 6.1 8.70 8.70 % % 49 3.63
Roman Josi
D NSH vs ANA 1 1 0.00 60% 23 26.0 8.4 9.67 9.67 % % 67 4.2
Jake Guentzel
C PIT @ OTT 1 2 0.00 56.5% 22 25.0 7.2 8.83 8.83 % % 51 4.01
Mike Hoffman
W OTT vs PIT 3 1 0.00 43.5% 22 34.0 7.2 6.32 6.32 % % 53 2.87
Jakob Silfverberg
W ANA @ NSH 2 1 0.00 40% 22 38.0 6.4 6.72 6.72 % % 50 3.06
Justin Schultz
D PIT @ OTT 1 1 0.00 56.5% 21 24.0 5.1 5.92 5.92 % % 47 2.82
Patric Hornqvist
W PIT @ OTT 3 1 0.00 56.5% 20 37.0 7.8 6.19 6.19 % % 56 3.1
Tristan Jarry
G PIT @ OTT prob 0.00 56.5% 20 5.0 5.0 0.00 0.00 % % 0 0
Chris Driedger
G OTT vs PIT 0.00 43.5% 20 5.5 2.7 0.00 0.00 % % 32 0
Corey Perry
W ANA @ NSH 1 2 0.00 40% 20 31.0 7.2 5.83 5.83 % % 50 2.92
Jhonas Enroth
G ANA @ NSH 0.00 40% 20 27.0 8.9 0.00 0.00 % % 60 0
Kevin Boyle
G ANA @ NSH 0.00 40% 20 0.00 0.00 % % 0 0
P.K. Subban
D NSH vs ANA 2 2 0.00 60% 20 29.0 7.3 6.45 6.45 % % 60 3.23
Ryan Ellis
D NSH vs ANA 1 2 0.00 60% 20 25.0 6.4 9.81 9.81 % % 58 4.91
Marek Mazanec
G NSH vs ANA 0.00 60% 20 11.0 3.7 0.00 0.00 % % 43 0
Ryan Kesler
C ANA @ NSH 2 1 0.00 40% 19 30.0 6.6 5.25 5.25 % % 51 2.76
Cam Fowler
D ANA @ NSH 1 1 0.00 40% 19 20.0 5.4 5.47 5.47 % % 55 2.88
Rickard Rakell
C ANA @ NSH 1 2 0.00 40% 19 27.0 5.5 7.86 7.86 % % 47 4.14
Derick Brassard
C OTT vs PIT 2 1 0.00 43.5% 18 46.0 6.3 4.58 4.58 % % 48 2.54
Mark Stone
W OTT vs PIT 3 2 0.00 43.5% 18 37.0 6.8 4.84 4.84 % % 53 2.69
Sami Vatanen
D ANA @ NSH 3 0.00 40% 18 24.0 6.1 4.41 4.41 % % 60 2.45
Conor Sheary
W PIT @ OTT 1 2 0.00 56.5% 17 26.0 5.0 5.22 5.22 % % 37 3.07
Clarke MacArthur
W OTT vs PIT 4 1 0.00 43.5% 17 25.0 4.8 3.48 3.48 % % 47 2.05
Patrick Eaves
W ANA @ NSH 1 0.00 40% 17 27.0 5.9 0.00 0.00 % % 48 0
Hampus Lindholm
D ANA @ NSH 2 0.00 40% 17 23.0 5.1 4.39 4.39 % % 51 2.58
Brandon Montour
D ANA @ NSH 1 2 0.00 40% 17 15.0 5.3 4.89 4.89 % % 64 2.88
Mattias Ekholm
D NSH vs ANA 2 0.00 60% 17 21.0 4.5 4.30 4.30 % % 48 2.53
Bryan Rust
W PIT @ OTT 2 0.00 56.5% 16 35.0 4.5 5.88 5.88 % % 28 3.68
Bobby Ryan
W OTT vs PIT 2 1 0.00 43.5% 16 30.0 5.9 4.70 4.70 % % 53 2.94
Jean-Gabriel Pageau
C OTT vs PIT 4 0.00 43.5% 16 35.0 5.2 6.03 6.03 % % 45 3.77
Ian Cole
D PIT @ OTT 1 0.00 56.5% 15 19.0 4.3 4.85 4.85 % % 51 3.23
Olli Maatta
D PIT @ OTT 2 2 0.00 56.5% 15 20.0 4.6 5.18 5.18 % % 56 3.45
Kyle Turris
C OTT vs PIT 1 2 0.00 43.5% 15 25.0 6.3 5.65 5.65 % % 53 3.77
Kevin Bieksa
D ANA @ NSH 0.00 40% 15 0.00 3.7 0.00 0.00 % % 46 0.00
Shea Theodore
D ANA @ NSH 3 2 0.00 40% 15 23.0 4.2 4.14 4.14 % % 39 2.76
James Neal
W NSH vs ANA 3 1 0.00 60% 15 30.0 7.1 6.17 6.17 % % 53 4.11
Craig Smith
W NSH vs ANA 0.00 60% 15 0.00 5.3 0.00 0.00 % % 46 0.00
Nick Ritchie
W ANA @ NSH 3 0.00 40% 14 14.0 3.6 3.44 3.44 % % 41 2.46
Ron Hainsey
D PIT @ OTT 3 0.00 56.5% 13 17.0 3.4 4.38 4.38 % % 40 3.37
Mark Streit
D PIT @ OTT 0.00 56.5% 13 0.00 5.2 0.00 0.00 % % 52 0.00
Nick Bonino
C PIT @ OTT 3 2 0.00 56.5% 13 35.0 5.6 5.32 5.32 % % 48 4.09
Dion Phaneuf
D OTT vs PIT 2 2 0.00 43.5% 13 24.0 5.2 3.10 3.10 % % 51 2.39
Marc Methot
D OTT vs PIT 1 0.00 43.5% 13 21.0 3.7 2.84 2.84 % % 39 2.19
Alexandre Burrows
W OTT vs PIT 1 2 0.00 43.5% 13 21.0 4.2 3.48 3.48 % % 39 2.68
Chris Wideman
D OTT vs PIT 3 2 0.00 43.5% 13 18.0 3.7 2.84 2.84 % % 52 2.19
Cody Ceci
D OTT vs PIT 2 0.00 43.5% 13 20.0 4.4 3.74 3.74 % % 53 2.88
Matt Cullen
C PIT @ OTT 4 0.00 56.5% 12 20.0 3.9 4.21 4.21 % % 37 3.51
Trevor Daley
D PIT @ OTT 2 2 0.00 56.5% 12 24.0 5.0 4.28 4.28 % % 46 3.57
Chris Kunitz
W PIT @ OTT 0.00 56.5% 12 0.00 5.0 0.00 0.00 % % 45 0.00
Tom Sestito
W PIT @ OTT 0.00 56.5% 12 0.00 1.3 0.00 0.00 % % 0 0.00
Kevin Porter
C PIT @ OTT 0.00 56.5% 12 0.00 1.5 0.00 0.00 % % 24 0.00
Cameron Gaunce
D PIT @ OTT 0.00 56.5% 12 0.00 3.2 0.00 0.00 % % 21 0.00
David Warsofsky
D PIT @ OTT 0.00 56.5% 12 0.00 2.7 0.00 0.00 % % 51 0.00
Tom Kuhnhackl
W PIT @ OTT 4 0.00 56.5% 12 21.0 3.2 3.04 3.04 % % 31 2.53
Garrett Wilson
W PIT @ OTT 0.00 56.5% 12 0.00 1.1 0.00 0.00 % % 32 0.00
Frank Corrado
D PIT @ OTT 0.00 56.5% 12 0.00 1.8 0.00 0.00 % % 1 0.00
Josh Archibald
W PIT @ OTT 0.00 56.5% 12 0.00 3.1 0.00 0.00 % % 19 0.00
Scott Wilson
W PIT @ OTT 3 0.00 56.5% 12 15.0 3.4 3.48 3.48 % % 38 2.9
Carl Hagelin
W PIT @ OTT 0.00 56.5% 12 0.00 5.0 0.00 0.00 % % 45 0.00
Brian Dumoulin
D PIT @ OTT 3 0.00 56.5% 12 15.0 3.4 3.74 3.74 % % 47 3.12
Derrick Pouliot
D PIT @ OTT 0.00 56.5% 12 0.00 2.6 0.00 0.00 % % 31 0.00
Oskar Sundqvist
C PIT @ OTT 0.00 56.5% 12 0.00 1.3 0.00 0.00 % % 0 0.00
Chad Ruhwedel
D PIT @ OTT 0.00 56.5% 12 0.00 3.6 0.00 0.00 % % 46 0.00
Jean-Sebastien Dea
C PIT @ OTT 0.00 56.5% 12 0.00 1.0 0.00 0.00 % % 0 0.00
Daniel Sprong
W PIT @ OTT 0.00 56.5% 12 0.00 2.0 0.00 0.00 % % 14 0.00
Dominik Simon
C PIT @ OTT 0.00 56.5% 12 0.00 2.2 0.00 0.00 % % 38 0.00
Carter Rowney
W PIT @ OTT 4 0.00 56.5% 12 23.0 3.1 3.44 3.44 % % 22 2.87
Chris Neil
W OTT vs PIT 0.00 43.5% 12 0.00 1.4 0.00 0.00 % % 0 0.00
Chris Kelly
C OTT vs PIT 0.00 43.5% 12 0.00 2.9 0.00 0.00 % % 28 0.00
Mike Blunden
W OTT vs PIT 0.00 43.5% 12 0.00 0.5 0.00 0.00 % % 0 0.00
Tom Pyatt
W OTT vs PIT 4 0.00 43.5% 12 24.0 3.5 2.49 2.49 % % 37 2.08
Zack Smith
C OTT vs PIT 3 0.00 43.5% 12 26.0 4.2 1.88 1.88 % % 37 1.57
Viktor Stalberg
W OTT vs PIT 2 0.00 43.5% 12 22.0 3.2 2.17 2.17 % % 33 1.81
Tommy Wingels
C OTT vs PIT 0.00 43.5% 12 0.00 3.4 0.00 0.00 % % 32 0.00
Mark Borowiecki
D OTT vs PIT 0.00 43.5% 12 0.00 2.4 0.00 0.00 % % 37 0.00
Fredrik Claesson
D OTT vs PIT 0.00 43.5% 12 0.00 2.9 0.00 0.00 % % 31 0.00
Max McCormick
W OTT vs PIT 0.00 43.5% 12 0.00 2.3 0.00 0.00 % % 27 0.00
Jyrki Jokipakka
D OTT vs PIT 0.00 43.5% 12 0.00 2.6 0.00 0.00 % % 31 0.00
Ryan Dzingel
W OTT vs PIT 1 0.00 43.5% 12 18.0 3.3 1.71 1.71 % % 36 1.43
Phil Varone
C OTT vs PIT 0.00 43.5% 12 0.00 1.3 0.00 0.00 % % 0 0.00
Nick Paul
W OTT vs PIT 0.00 43.5% 12 0.00 2.2 0.00 0.00 % % 26 0.00
Ben Harpur
D OTT vs PIT 3 0.00 43.5% 12 11.0 2.1 1.78 1.78 % % 23 1.48
Andreas Englund
D OTT vs PIT 0.00 43.5% 12 0.00 -0.6 0.00 0.00 % % 0 0.00
Antoine Vermette
C ANA @ NSH 3 2 0.00 40% 12 27.0 3.9 2.47 2.47 % % 29 2.06
Nate Thompson
C ANA @ NSH 4 0.00 40% 12 23.0 2.8 2.67 2.67 % % 33 2.23
Andrew Cogliano
W ANA @ NSH 2 0.00 40% 12 25.0 4.2 2.97 2.97 % % 42 2.48
Clayton Stoner
D ANA @ NSH 0.00 40% 12 0.00 2.6 0.00 0.00 % % 38 0.00
Jared Boll
W ANA @ NSH 0.00 40% 12 0.00 0.7 0.00 0.00 % % 0 0.00
Simon Despres
D ANA @ NSH 0.00 40% 12 0.00 4.1 0.00 0.00 % % 51 0.00
Korbinian Holzer
D ANA @ NSH 0.00 40% 12 0.00 2.4 0.00 0.00 % % 25 0.00
Chris Wagner
C ANA @ NSH 3 0.00 40% 12 15.0 2.3 2.33 2.33 % % 24 1.94
Sam Carrick
C ANA @ NSH 0.00 40% 12 0.00 0.0 0.00 0.00 % % 0 0.00
Logan Shaw
C ANA @ NSH 0.00 40% 12 0.00 2.2 0.00 0.00 % % 28 0.00
Josh Manson
D ANA @ NSH 2 0.00 40% 12 14.0 3.3 3.55 3.55 % % 46 2.96
Nic Kerdiles
W ANA @ NSH 4 0.00 40% 12 2.0 0.8 1.29 1.29 % % 48 1.08
Jaycob Megna
D ANA @ NSH 0.00 40% 12 0.00 2.0 0.00 0.00 % % 0 0.00
Ondrej Kase
W ANA @ NSH 4 0.00 40% 12 16.0 2.7 1.83 1.83 % % 22 1.53
Max Jones
W ANA @ NSH 0.00 40% 12 0.00 0.00 0.00 % % 0 0.00
Mike Fisher
C NSH vs ANA 2 2 0.00 60% 12 24.0 5.1 4.33 4.33 % % 49 3.61
Vernon Fiddler
C NSH vs ANA 4 0.00 60% 12 25.0 2.9 0.97 0.97 % % 19 0.81
P.A. Parenteau
W NSH vs ANA 0.00 60% 12 0.00 4.7 0.00 0.00 % % 44 0.00
Cody Bass
C NSH vs ANA 0.00 60% 12 0.00 0.6 0.00 0.00 % % 1 0.00
Cody McLeod
W NSH vs ANA 0.00 60% 12 0.00 2.0 0.00 0.00 % % 12 0.00
Colin Wilson
W NSH vs ANA 3 0.00 60% 12 27.0 5.1 4.40 4.40 % % 43 3.67
Yannick Weber
D NSH vs ANA 3 0.00 60% 12 19.0 2.9 1.32 1.32 % % 31 1.1
Matt Irwin
D NSH vs ANA 3 0.00 60% 12 19.0 4.2 3.12 3.12 % % 51 2.6
Ryan Johansen
C NSH vs ANA 1 1 0.00 60% 12 27.0 6.6 6.03 6.03 % % 52 5.03
Austin Watson
W NSH vs ANA 4 0.00 60% 12 26.0 3.1 3.74 3.74 % % 32 3.12
Calle Jarnkrok
C NSH vs ANA 2 2 0.00 60% 12 20.0 3.3 3.99 3.99 % % 25 3.33
Petter Granberg
D NSH vs ANA 0.00 60% 12 0.00 1.6 0.00 0.00 % % 25 0.00
Anthony Bitetto
D NSH vs ANA 0.00 60% 12 0.00 2.3 0.00 0.00 % % 31 0.00
Harry Zolnierczyk
W NSH vs ANA 4 0.00 60% 12 11.0 1.8 2.29 2.29 % % 16 1.91
Miikka Salomaki
W NSH vs ANA 2 0.00 60% 12 12.0 2.2 2.01 2.01 % % 29 1.68
Pontus Aberg
W NSH vs ANA 0.00 60% 12 0.00 1.7 0.00 0.00 % % 0 0.00
Colton Sissons
C NSH vs ANA 3 0.00 60% 12 29.0 2.6 3.81 3.81 % % 4 3.18
Brad Hunt
D NSH vs ANA 0.00 60% 12 0.00 3.1 0.00 0.00 % % 32 0.00
Kevin Fiala
W NSH vs ANA 2 0.00 60% 12 24.0 4.0 0.00 0.00 % % 40 0
Vladislav Kamenev
W NSH vs ANA 0.00 60% 12 0.00 0.0 0.00 0.00 % % 0 0.00
Frederick Gaudreau
C NSH vs ANA 0.00 60% 12 0.00 1.9 0.00 0.00 % % 28 0.00
Alexandre Carrier
D NSH vs ANA 0.00 60% 12 0.00 2.0 0.00 0.00 % % 0 0.00
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $200 if left blank.

Offensive Players vs Goalie

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
ANA
@
NSH
PIT
@
OTT
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team and same Line or PP unit (otherwise known as stacking) this is where to do it. You can add a single stack with the remaining players not needing to be from the same team/line/PP Unit, or you can add multiple stacks per lineup so that all of the players are paired with other players from the same team/line/PP Unit.

To get started, click on the Add Stack link. You will need to select how many players you want used in the stack, which Line/PP units you want possibly stacked and which teams you would like possibly used for the first stack.

You can select multiple Lines/PP Units, or leave this blank and it will just stack players from the same team. You can also choose to stack only Forwards (Centers and Wings) or allow all positions (Centers, Wings and Defense Men) to be stacked.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 skaters from 1 team, and 4 skaters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.