Fanduelsingle - MLB
2018-08-09
Filter Players
Apply filters
Batting Order
Projected Score
Salary
Value
Consistency
Vegas Run Total
  • ALL
  • MVP
  • IF
  • OF
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Win % Runs vs. Pitcher Hand ERA/AVG wOBA ISO Avg innings K/9 WHIP Order Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
Christian Yelich
OF MIL vs SD 63.6% 4.89 TBD L 0.320 0.396 0.221 0.00 0.0 0.00 2 9500 38.9 13.2 17.51 17.51 % % 59 1.8 3.0 0.3
Jesus Aguilar
IF MIL vs SD 63.6% 4.89 TBD R 0.277 0.395 0.310 0.00 0.0 0.00 3 9000 41.5 11.6 16.25 16.25 % % 46 1.8 0.0
Lorenzo Cain
OF MIL vs SD 63.6% 4.89 TBD R 0.294 0.362 0.121 0.00 0.0 0.00 1 8000 34 10.7 14.26 14.26 % % 54 1.8 6.0 0.8
Jonathan Schoop
IF MIL vs SD 63.6% 4.89 TBD R 0.226 0.279 0.172 0.00 0.0 0.00 7 8000 27.2 8.5 8.46 8.46 % % 45 1.1 19.4 2.4
Travis Shaw
IF MIL vs SD 63.6% 4.89 TBD L 0.249 0.358 0.238 0.00 0.0 0.00 6 7500 30.9 10.5 10.70 10.70 % % 52 1.4 18.2 2.4
Ryan Braun
OF MIL vs SD 63.6% 4.89 TBD R 0.248 0.319 0.198 0.00 0.0 0.00 4 7500 35.5 8.9 14.44 14.44 % % 41 1.9 0.0
Eric Hosmer
IF SD @ MIL 36.4% 3.61 TBD L 0.252 0.314 0.134 0.00 0.0 0.00 2 7000 28.1 8.9 10.35 10.35 % % 50 1.5 0.0
Hunter Renfroe
OF SD @ MIL 36.4% 3.61 TBD R 0.237 0.328 0.228 0.00 0.0 0.00 3 6000 28.2 8.4 9.92 9.92 % % 45 1.7 38.2 6.4
Freddy Galvis
IF SD @ MIL 36.4% 3.61 TBD B 0.227 0.276 0.108 0.00 0.0 0.00 7 5500 20.5 7.0 5.50 5.50 % % 46 1 27.9 5.1
Hernan Perez
IF MIL vs SD 63.6% 4.89 TBD R 0.262 0.315 0.167 0.00 0.0 0.00 5 5000 28.2 6.7 10.89 10.89 % % 35 2.2 15.2 3
Franmil Reyes
OF SD @ MIL 36.4% 3.61 TBD R 0.254 0.338 0.246 0.00 0.0 0.00 4 5000 28.6 7.5 9.06 9.06 % % 35 1.8 30.9 6.2
Travis Jankowski
OF SD @ MIL 36.4% 3.61 TBD L 0.252 0.299 0.068 0.00 0.0 0.00 1 4500 23.9 7.2 9.06 9.06 % % 48 2 12.7 2.8
Manny Pina
IF MIL vs SD 63.6% 4.89 TBD R 0.233 0.288 0.131 0.00 0.0 0.00 8 4500 20.7 6.9 5.75 5.75 % % 46 1.3 12.5 2.8
Jose Pirela
IF SD @ MIL 36.4% 3.61 TBD R 0.252 0.291 0.093 0.00 0.0 0.00 6 4000 21.1 6.8 5.91 5.91 % % 44 1.5 12.5 3.1
A.J. Ellis
IF SD @ MIL 36.4% 3.61 TBD R 0.292 0.350 0.083 0.00 0.0 0.00 8 4000 15.2 6.5 4.33 4.33 % % 58 1.1 6.2 1.6
Cory Spangenberg
IF SD @ MIL 36.4% 3.61 TBD L 0.236 0.278 0.139 0.00 0.0 0.00 5 4000 23.2 5.9 7.89 7.89 % % 35 2 6.0 1.5
Gregory Polanco
OF PIT @ SF 40.8% 3.60 TBD L 0.242 0.351 0.247 0.00 0.0 0.00 3 9000 34.1 11.2 11.93 11.93 % % 50 1.3 12.7 1.4
Starling Marte
OF PIT @ SF 40.8% 3.60 TBD R 0.281 0.342 0.192 0.00 0.0 0.00 2 9000 32.4 11.7 11.78 11.78 % % 56 1.3 12.2 1.4
Andrew McCutchen
OF SF vs PIT 59.2% 4.41 TBD R 0.260 0.342 0.158 0.00 0.0 0.00 1 8000 30.7 10.0 11.63 11.63 % % 52 1.5 0.0
Evan Longoria
IF SF vs PIT 59.2% 4.41 TBD R 0.258 0.316 0.193 0.00 0.0 0.00 3 8000 29.3 9.1 11.00 11.00 % % 50 1.4 6.2 0.8
Josh Harrison
IF PIT @ SF 40.8% 3.60 TBD R 0.250 0.285 0.103 0.00 0.0 0.00 7 7500 24.6 8.2 6.59 6.59 % % 45 0.9 9.2 1.2
Buster Posey
IF SF vs PIT 59.2% 4.41 TBD R 0.289 0.342 0.111 0.00 0.0 0.00 2 7500 25.8 8.9 10.69 10.69 % % 57 1.4 0.0
Steven Duggar
OF SF vs PIT 59.2% 4.41 TBD L 0.247 0.294 0.111 0.00 0.0 0.00 8 7000 23 8.5 5.75 5.75 % % 49 0.8 16.0 2.3
Brandon Crawford
IF SF vs PIT 59.2% 4.41 TBD L 0.281 0.346 0.159 0.00 0.0 0.00 4 7000 29.8 9.0 10.37 10.37 % % 46 1.5 9.2 1.3
Elias Diaz
IF PIT @ SF 40.8% 3.60 TBD R 0.265 0.321 0.164 0.00 0.0 0.00 5 6000 24.6 7.3 8.18 8.18 % % 44 1.4 25.2 4.2
Josh Bell
IF PIT @ SF 40.8% 3.60 TBD B 0.264 0.330 0.139 0.00 0.0 0.00 6 6000 23.3 8.9 6.95 6.95 % % 54 1.2 24.9 4.2
Austin Slater
OF SF vs PIT 59.2% 4.41 TBD R 0.311 0.381 0.054 0.00 0.0 0.00 5 5500 24.1 7.4 7.57 7.57 % % 44 1.4 6.2 1.1
Jordy Mercer
IF PIT @ SF 40.8% 3.60 TBD R 0.260 0.323 0.141 0.00 0.0 0.00 8 5500 19.9 7.8 5.19 5.19 % % 53 0.9 3.2 0.6
Adam Frazier
OF PIT @ SF 40.8% 3.60 TBD L 0.280 0.344 0.160 0.00 0.0 0.00 1 5000 24.6 6.1 9.39 9.39 % % 38 1.9 19.2 3.8
David Freese
IF PIT @ SF 40.8% 3.60 TBD R 0.276 0.340 0.172 0.00 0.0 0.00 4 4500 27 6.3 9.54 9.54 % % 31 2.1 31.9 7.1
Joe Panik
IF SF vs PIT 59.2% 4.41 TBD L 0.233 0.285 0.107 0.00 0.0 0.00 7 4000 20 6.8 6.46 6.46 % % 50 1.6 16.2 4.1
Alen Hanson
IF SF vs PIT 59.2% 4.41 TBD B 0.273 0.318 0.180 0.00 0.0 0.00 6 4000 22.2 7.6 5.38 5.38 % % 45 1.3 15.7 3.9
Christian Yelich - MVP
MVP MIL vs SD 63.6% 4.89 TBD L 0.320 0.396 0.221 0.00 0.0 0.00 2 9500 38.9 13.2 26.27 26.27 % % 59 1.8 4.5 0.5
Jesus Aguilar - MVP
MVP MIL vs SD 63.6% 4.89 TBD R 0.277 0.395 0.310 0.00 0.0 0.00 3 9000 41.5 11.6 24.38 24.38 % % 46 1.8 0
Lorenzo Cain - MVP
MVP MIL vs SD 63.6% 4.89 TBD R 0.294 0.362 0.121 0.00 0.0 0.00 1 8000 34 10.7 21.39 21.39 % % 54 1.8 9 1.1
Jonathan Schoop - MVP
MVP MIL vs SD 63.6% 4.89 TBD R 0.226 0.279 0.172 0.00 0.0 0.00 7 8000 27.2 8.5 12.69 12.69 % % 45 1.1 29.1 3.6
Travis Shaw - MVP
MVP MIL vs SD 63.6% 4.89 TBD L 0.249 0.358 0.238 0.00 0.0 0.00 6 7500 30.9 10.5 16.05 16.05 % % 52 1.4 27.3 3.6
Ryan Braun - MVP
MVP MIL vs SD 63.6% 4.89 TBD R 0.248 0.319 0.198 0.00 0.0 0.00 4 7500 35.5 8.9 21.66 21.66 % % 41 1.9 0
Eric Hosmer - MVP
MVP SD @ MIL 36.4% 3.61 TBD L 0.252 0.314 0.134 0.00 0.0 0.00 2 7000 28.1 8.9 15.53 15.53 % % 50 1.5 0
Hunter Renfroe - MVP
MVP SD @ MIL 36.4% 3.61 TBD R 0.237 0.328 0.228 0.00 0.0 0.00 3 6000 28.2 8.4 14.88 14.88 % % 45 1.7 57.3 9.6
Freddy Galvis - MVP
MVP SD @ MIL 36.4% 3.61 TBD B 0.227 0.276 0.108 0.00 0.0 0.00 7 5500 20.5 7.0 8.25 8.25 % % 46 1 41.85 7.6
Hernan Perez - MVP
MVP MIL vs SD 63.6% 4.89 TBD R 0.262 0.315 0.167 0.00 0.0 0.00 5 5000 28.2 6.7 16.34 16.34 % % 35 2.2 22.8 4.6
Franmil Reyes - MVP
MVP SD @ MIL 36.4% 3.61 TBD R 0.254 0.338 0.246 0.00 0.0 0.00 4 5000 28.6 7.5 13.59 13.59 % % 35 1.8 46.35 9.3
Travis Jankowski - MVP
MVP SD @ MIL 36.4% 3.61 TBD L 0.252 0.299 0.068 0.00 0.0 0.00 1 4500 23.9 7.2 13.59 13.59 % % 48 2 19.05 4.2
Manny Pina - MVP
MVP MIL vs SD 63.6% 4.89 TBD R 0.233 0.288 0.131 0.00 0.0 0.00 8 4500 20.7 6.9 8.63 8.63 % % 46 1.3 18.75 4.2
Jose Pirela - MVP
MVP SD @ MIL 36.4% 3.61 TBD R 0.252 0.291 0.093 0.00 0.0 0.00 6 4000 21.1 6.8 8.87 8.87 % % 44 1.5 18.75 4.7
A.J. Ellis - MVP
MVP SD @ MIL 36.4% 3.61 TBD R 0.292 0.350 0.083 0.00 0.0 0.00 8 4000 15.2 6.5 6.5 6.5 % % 58 1.1 9.3 2.3
Cory Spangenberg - MVP
MVP SD @ MIL 36.4% 3.61 TBD L 0.236 0.278 0.139 0.00 0.0 0.00 5 4000 23.2 5.9 11.84 11.84 % % 35 2 9 2.3
Gregory Polanco - MVP
MVP PIT @ SF 40.8% 3.60 TBD L 0.242 0.351 0.247 0.00 0.0 0.00 3 9000 34.1 11.2 17.9 17.9 % % 50 1.3 19.05 2.1
Starling Marte - MVP
MVP PIT @ SF 40.8% 3.60 TBD R 0.281 0.342 0.192 0.00 0.0 0.00 2 9000 32.4 11.7 17.67 17.67 % % 56 1.3 18.3 2
Andrew McCutchen - MVP
MVP SF vs PIT 59.2% 4.41 TBD R 0.260 0.342 0.158 0.00 0.0 0.00 1 8000 30.7 10.0 17.45 17.45 % % 52 1.5 0
Evan Longoria - MVP
MVP SF vs PIT 59.2% 4.41 TBD R 0.258 0.316 0.193 0.00 0.0 0.00 3 8000 29.3 9.1 16.5 16.5 % % 50 1.4 9.3 1.2
Josh Harrison - MVP
MVP PIT @ SF 40.8% 3.60 TBD R 0.250 0.285 0.103 0.00 0.0 0.00 7 7500 24.6 8.2 9.89 9.89 % % 45 0.9 13.8 1.8
Buster Posey - MVP
MVP SF vs PIT 59.2% 4.41 TBD R 0.289 0.342 0.111 0.00 0.0 0.00 2 7500 25.8 8.9 16.04 16.04 % % 57 1.4 0
Steven Duggar - MVP
MVP SF vs PIT 59.2% 4.41 TBD L 0.247 0.294 0.111 0.00 0.0 0.00 8 7000 23 8.5 8.63 8.63 % % 49 0.8 24 3.4
Brandon Crawford - MVP
MVP SF vs PIT 59.2% 4.41 TBD L 0.281 0.346 0.159 0.00 0.0 0.00 4 7000 29.8 9.0 15.56 15.56 % % 46 1.5 13.8 2
Elias Diaz - MVP
MVP PIT @ SF 40.8% 3.60 TBD R 0.265 0.321 0.164 0.00 0.0 0.00 5 6000 24.6 7.3 12.27 12.27 % % 44 1.4 37.8 6.3
Josh Bell - MVP
MVP PIT @ SF 40.8% 3.60 TBD B 0.264 0.330 0.139 0.00 0.0 0.00 6 6000 23.3 8.9 10.43 10.43 % % 54 1.2 37.35 6.2
Austin Slater - MVP
MVP SF vs PIT 59.2% 4.41 TBD R 0.311 0.381 0.054 0.00 0.0 0.00 5 5500 24.1 7.4 11.36 11.36 % % 44 1.4 9.3 1.7
Jordy Mercer - MVP
MVP PIT @ SF 40.8% 3.60 TBD R 0.260 0.323 0.141 0.00 0.0 0.00 8 5500 19.9 7.8 7.79 7.79 % % 53 0.9 4.8 0.9
Adam Frazier - MVP
MVP PIT @ SF 40.8% 3.60 TBD L 0.280 0.344 0.160 0.00 0.0 0.00 1 5000 24.6 6.1 14.09 14.09 % % 38 1.9 28.8 5.8
David Freese - MVP
MVP PIT @ SF 40.8% 3.60 TBD R 0.276 0.340 0.172 0.00 0.0 0.00 4 4500 27 6.3 14.31 14.31 % % 31 2.1 47.85 10.6
Joe Panik - MVP
MVP SF vs PIT 59.2% 4.41 TBD L 0.233 0.285 0.107 0.00 0.0 0.00 7 4000 20 6.8 9.69 9.69 % % 50 1.6 24.3 6.1
Alen Hanson - MVP
MVP SF vs PIT 59.2% 4.41 TBD B 0.273 0.318 0.180 0.00 0.0 0.00 6 4000 22.2 7.6 8.07 8.07 % % 45 1.3 23.55 5.9
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $35,000 if left blank.

UTIL Position

Hitters vs Pitcher

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
ATL
@
WSH
MIN
@
CLE
SD
@
MIL
TEX
@
NYY
BOS
@
TOR
BAL
@
TB
SEA
@
HOU
LAD
@
COL
PIT
@
SF
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team (otherwise known as stacking) this is where to do it. This only applies to Hitters, and you can add a single stack with the remaining hitters not needing to be from the same team, or you can add multiple stacks per lineup so that all of the hitters are paired with other hitters from the same team.

To get started, click on the Add Stack link. You will need to select which teams you would like possibly used for the first stack. You can pick as many teams as you wish. You then will need to select a stack size, which is the number of hitters used from one of the selected teams.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 batters from 1 team, and 4 batters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.