We have pushed out an update to the FC software, click here to get a full rundown Dismiss (Do not show again) ×
Fanduel - NHL
2018-04-16
Filter Players
Apply filters
Line
Power Play Unit
Projected Score
Salary
Value
Consistency
  • ALL
  • C
  • W
  • D
  • G
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Status / Line PP Unit Goals Win % Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
Pekka Rinne
G NSH @ COL confirm 2.47 59.2% 9100 60.0 19.5 22.46 22.46 % % 66 2.50 -7.2
Tuukka Rask
G BOS @ TOR confirm 2.82 47.6% 9000 51.2 18.0 17.05 17.05 % % 61 1.90 4.8 0.5
Andrei Vasilevskiy
G TB @ NJ prob 2.82 55.6% 8900 54.4 19.0 19.34 19.34 % % 65 2.20 16.8 1.9
Nikita Kucherov
W TB @ NJ 1 1 3.18 55.6% 8700 58.3 15.1 20.49 20.49 % % 62 2.40 23.4 2.7
Martin Jones
G SJ vs ANA confirm 2.27 58.3% 8600 50.4 16.4 20.22 20.22 % % 58 2.40 44.0 5.1
Erik Johnson
D COL vs NSH 2.47 40.8% 8500 0.00 11.1 0.00 0.00 % % 65 0.00 0.0
John Gibson
G ANA @ SJ confirm 2.73 41.7% 8400 50.4 17.8 17.51 17.51 % % 60 2.10 -4.8
Steven Stamkos
C TB @ NJ 1 1 3.18 55.6% 8400 61.3 14.4 14.42 14.42 % % 60 1.70 22.6 2.7
Nathan MacKinnon
C COL vs NSH 1 1 2.47 40.8% 8300 58.1 13.8 18.74 18.74 % % 60 2.30 36.8 4.4
Frederik Andersen
G TOR vs BOS confirm 2.68 52.4% 8100 53.6 19.0 17.65 17.65 % % 63 2.20 36.0 4.4
Patrice Bergeron
C BOS @ TOR 1 1 2.68 47.6% 8100 67.7 13.6 10.23 10.23 % % 61 1.30 6.4 0.8
Taylor Hall
W NJ vs TB 1 1 2.82 44.4% 8000 49.5 14.6 21.41 21.41 % % 65 2.70 39.7 5
Brad Marchand
W BOS @ TOR 1 1 2.68 47.6% 7900 64.2 13.7 16.93 16.93 % % 59 2.10 6.4 0.8
Filip Forsberg
W NSH @ COL 1 1 3.03 59.2% 7900 55.7 13.1 16.39 16.39 % % 60 2.10 19.7 2.5
Jonathan Bernier
G COL vs NSH confirm 3.03 40.8% 7700 54.4 14.8 12.82 12.82 % % 50 1.70 23.2 3
Auston Matthews
C TOR vs BOS 1 2 2.82 52.4% 7600 57.6 14.9 16.95 16.95 % % 64 2.20 21.6 2.8
David Pastrnak
W BOS @ TOR 1 1 2.68 47.6% 7600 68.5 13.2 19.41 19.41 % % 59 2.60 6.4 0.8
Cory Schneider
G NJ vs TB confirm 3.18 44.4% 7500 50.4 16.2 10.87 10.87 % % 60 1.40 31.2 4.2
Peter Budaj
G TB @ NJ 2.82 55.6% 7500 51.2 11.7 10.22 10.22 % % 46 1.40 0.0
Louis Domingue
G TB @ NJ 2.82 55.6% 7500 40.8 13.9 16.54 16.54 % % 54 2.20
Brent Burns
D SJ vs ANA 1 1 2.73 58.3% 7300 46.9 16.7 15.67 15.67 % % 71 2.10 3.2 0.4
Joe Pavelski
C SJ vs ANA 1 1 2.73 58.3% 7300 52.8 14.6 16.19 16.19 % % 65 2.20 27.4 3.8
Ryan Getzlaf
C ANA @ SJ 1 1 2.27 41.7% 7200 47.7 13.8 10.73 10.73 % % 63 1.50 14.9 2.1
Rickard Rakell
W ANA @ SJ 1 1 2.27 41.7% 7100 50.4 10.5 11.73 11.73 % % 55 1.70 26.9 3.8
Gabriel Dumont
W TB @ NJ 3.18 55.6% 7100 0.00 2.8 0.00 0.00 % % 32 0.00
Logan Couture
C SJ vs ANA 2 1 2.73 58.3% 6900 53.0 13.3 13.63 13.63 % % 62 2.00 37.0 5.4
Evander Kane
W SJ vs ANA 1 2 2.73 58.3% 6900 59.2 12.9 14.94 14.94 % % 61 2.20 26.9 3.9
James van Riemsdyk
W TOR vs BOS 3 1 2.82 52.4% 6600 52.5 12.6 15.16 15.16 % % 61 2.30 14.1 2.1
Mikko Rantanen
W COL vs NSH 1 1 2.47 40.8% 6600 46.4 11.1 14.12 14.12 % % 54 2.10 20.8 3.2
Victor Hedman
D TB @ NJ 1 1 3.18 55.6% 6600 49.0 13.1 18.42 18.42 % % 64 2.80 11.2 1.7
Anders Bjork
W BOS @ TOR 2.68 47.6% 6600 0.00 5.3 0.00 0.00 % % 25 0.00
Andy Welinski
D ANA @ SJ 2.27 41.7% 6500 0.00 2.1 0.00 0.00 % % 20 0.00 3.2 0.5
Korbinian Holzer
D ANA @ SJ 2.27 41.7% 6500 0.00 2.6 0.00 0.00 % % 24 0.00 0.0
J.T. Miller
W TB @ NJ 1 1 3.18 55.6% 6400 53.0 9.0 13.57 13.57 % % 53 2.10 1.6 0.3
Brayden Point
C TB @ NJ 2 2 3.18 55.6% 6400 40.0 11.7 16.14 16.14 % % 61 2.50 6.4 1
Mitchell Marner
W TOR vs BOS 2 1 2.82 52.4% 6400 56.5 11.9 17.18 17.18 % % 57 2.70 17.6 2.8
Viktor Arvidsson
W NSH @ COL 1 1 3.03 59.2% 6400 48.8 11.4 16.37 16.37 % % 60 2.60 4.8 0.8
Ryan Johansen
C NSH @ COL 1 1 3.03 59.2% 6300 51.2 11.1 12.42 12.42 % % 59 2.00 17.3 2.7
Roman Josi
D NSH @ COL 1 2 3.03 59.2% 6300 48.5 14.1 15.63 15.63 % % 70 2.50 17.6 2.8
Torey Krug
D BOS @ TOR 2 1 2.68 47.6% 6200 49.0 11.4 14.83 14.83 % % 64 2.40 8.0 1.3
David Krejci
C BOS @ TOR 2 2 2.68 47.6% 6200 49.0 10.4 10.61 10.61 % % 58 1.70 4.8 0.8
Rick Nash
W BOS @ TOR 2 1 2.68 47.6% 6100 52.5 12.2 6.46 6.46 % % 60 1.10 9.6 1.6
Joe Thornton
C SJ vs ANA 2.73 58.3% 6000 0.00 10.1 0.00 0.00 % % 59 0.00 0.0
Nazem Kadri
C TOR vs BOS 2.82 52.4% 5900 0.00 11.6 0.00 0.00 % % 61 0.00 0.0
William Nylander
W TOR vs BOS 1 2 2.82 52.4% 5800 42.9 11.0 12.32 12.32 % % 59 2.10 14.4 2.5
Corey Perry
W ANA @ SJ 3 1 2.27 41.7% 5700 52.2 12.1 9.06 9.06 % % 57 1.60 8.0 1.4
Ondrej Palat
W TB @ NJ 2 2 3.18 55.6% 5700 43.7 10.9 11.62 11.62 % % 57 2.00 3.2 0.6
Tyson Barrie
D COL vs NSH 1 1 2.47 40.8% 5600 51.3 11.3 15.14 15.14 % % 60 2.70 4.8 0.9
Kyle Palmieri
W NJ vs TB 1 1 2.82 44.4% 5600 42.6 11.1 14.07 14.07 % % 59 2.50 13.3 2.4
Gabriel Landeskog
W COL vs NSH 1 1 2.47 40.8% 5600 62.6 11.5 11.27 11.27 % % 58 2.00 36.0 6.4
Kyle Turris
C NSH @ COL 2 2 3.03 59.2% 5600 39.2 10.9 11.05 11.05 % % 61 2.00 0.0
Patrick Marleau
W TOR vs BOS 2 2 2.82 52.4% 5600 57.6 10.5 12.15 12.15 % % 58 2.20 27.2 4.9
Jakob Silfverberg
W ANA @ SJ 2 2 2.27 41.7% 5500 55.7 10.5 8.26 8.26 % % 57 1.50 3.2 0.6
Craig Smith
W NSH @ COL 2 1 3.03 59.2% 5500 38.9 9.6 13.59 13.59 % % 56 2.50 3.2 0.6
Adam Henrique
C ANA @ SJ 3 1 2.27 41.7% 5400 38.4 9.8 9.03 9.03 % % 56 1.70 3.2 0.6
Nico Hischier
C NJ vs TB 1 2 2.82 44.4% 5300 35.2 10.3 11.72 11.72 % % 58 2.20 4.8 0.9
Tomas Hertl
W SJ vs ANA 2 1 2.73 58.3% 5300 40.0 9.4 10.74 10.74 % % 56 2.00 17.3 3.3
P.K. Subban
D NSH @ COL 2 1 3.03 59.2% 5300 40.2 12.4 12.63 12.63 % % 67 2.40 6.4 1.2
Yanni Gourde
W TB @ NJ 3 2 3.18 55.6% 5200 40.0 10.1 13.28 13.28 % % 53 2.60 4.8 0.9
Tyler Johnson
W TB @ NJ 2 2 3.18 55.6% 5100 50.9 11.7 10.57 10.57 % % 57 2.10 4.8 0.9
Ryan Ellis
D NSH @ COL 1 2 3.03 59.2% 5100 38.1 10.9 16.71 16.71 % % 64 3.30 19.7 3.9
David Backes
W BOS @ TOR 3 2 2.68 47.6% 4900 58.6 10.7 7.14 7.14 % % 56 1.50 6.4 1.3
Morgan Rielly
D TOR vs BOS 1 1 2.82 52.4% 4900 46.6 9.7 12.02 12.02 % % 63 2.50 21.3 4.3
Ryan Kesler
C ANA @ SJ 2 2 2.27 41.7% 4900 45.6 11.0 5.53 5.53 % % 60 1.10 4.8 1
Riley Nash
C BOS @ TOR 3 2.68 47.6% 4800 40.0 6.5 7.79 7.79 % % 48 1.60 6.4 1.3
Ryan McDonagh
D TB @ NJ 2 2 3.18 55.6% 4700 36.8 10.0 6.23 6.23 % % 63 1.30 8.0 1.7
Timo Meier
W SJ vs ANA 3 2 2.73 58.3% 4700 32.5 8.4 11.32 11.32 % % 58 2.40 25.8 5.5
Cam Fowler
D ANA @ SJ 2.27 41.7% 4700 0.00 9.3 0.00 0.00 % % 63 0.00 0.0
Carl Soderberg
C COL vs NSH 3 2.47 40.8% 4700 37.8 8.2 7.96 7.96 % % 54 1.70 16.0 3.4
Jake Gardiner
D TOR vs BOS 2 2 2.82 52.4% 4600 35.7 8.1 11.61 11.61 % % 56 2.50 4.8 1
Tyler Bozak
C TOR vs BOS 3 1 2.82 52.4% 4600 49.3 9.5 9.95 9.95 % % 53 2.20 11.7 2.5
Zach Hyman
W TOR vs BOS 1 2.82 52.4% 4600 32.0 8.0 8.85 8.85 % % 59 1.90 11.2 2.4
Jake DeBrusk
W BOS @ TOR 2 2 2.68 47.6% 4500 35.4 8.6 7.55 7.55 % % 46 1.70 0.0
Patrick Maroon
W NJ vs TB 2 1 2.82 44.4% 4500 45.6 8.1 7.05 7.05 % % 50 1.60 6.4 1.4
Sami Vatanen
D NJ vs TB 1 2 2.82 44.4% 4500 37.0 10.0 11.96 11.96 % % 64 2.70 4.8 1.1
Travis Zajac
C NJ vs TB 3 1 2.82 44.4% 4500 46.1 7.8 8.91 8.91 % % 46 2.00 3.2 0.7
Hampus Lindholm
D ANA @ SJ 1 2 2.27 41.7% 4400 45.6 8.4 8.66 8.66 % % 59 2.00 1.6 0.4
Charlie McAvoy
D BOS @ TOR 1 2 2.68 47.6% 4400 31.2 6.9 4.69 4.69 % % 50 1.10 11.2 2.5
Justin Braun
D SJ vs ANA 2 2.73 58.3% 4300 35.2 7.7 9.05 9.05 % % 63 2.10 3.2 0.7
Tyson Jost
W COL vs NSH 2 1 2.47 40.8% 4300 29.3 6.3 6.64 6.64 % % 51 1.50 4.8 1.1
Alex Killorn
W TB @ NJ 3 1 3.18 55.6% 4200 48.5 9.0 12.27 12.27 % % 54 2.90 22.6 5.4
Calle Jarnkrok
W NSH @ COL 3.03 59.2% 4200 0.00 6.0 0.00 0.00 % % 41 0.00 0.0
Mattias Ekholm
D NSH @ COL 2 3.03 59.2% 4200 31.7 7.6 9.14 9.14 % % 57 2.20 11.2 2.7
Joonas Donskoi
W SJ vs ANA 1 2 2.73 58.3% 4200 40.0 7.0 5.63 5.63 % % 48 1.30 33.3 7.9
Marc-Edouard Vlasic
D SJ vs ANA 2 2 2.73 58.3% 4200 45.3 9.9 9.81 9.81 % % 64 2.30 21.3 5.1
Zdeno Chara
D BOS @ TOR 1 2.68 47.6% 4200 34.4 9.0 6.74 6.74 % % 62 1.60 29.6 7
Kevin Labanc
W SJ vs ANA 3 1 2.73 58.3% 4100 43.4 7.0 7.48 7.48 % % 45 1.80 11.7 2.9
Will Butcher
D NJ vs TB 3 1 2.82 44.4% 4100 28.2 7.5 7.26 7.26 % % 53 1.80 14.1 3.4
Mikhail Sergachev
D TB @ NJ 3 3.18 55.6% 4100 28.8 8.1 8.40 8.40 % % 57 2.00 6.4 1.6
Marcus Johansson
W NJ vs TB 2 2.82 44.4% 4100 38.9 8.7 4.99 4.99 % % 50 1.20 3.2 0.8
Andrew Cogliano
W ANA @ SJ 2 2.27 41.7% 4000 34.4 7.3 7.62 7.62 % % 53 1.90 8.0 2
Kevin Fiala
W NSH @ COL 2 2 3.03 59.2% 4000 36.8 8.8 9.74 9.74 % % 51 2.40 0.0
Ryan Donato
W BOS @ TOR 2.68 47.6% 4000 0.00 7.9 0.00 0.00 % % 50 0.00 0.0
Pavel Zacha
C NJ vs TB 2 2.82 44.4% 4000 29.3 5.7 5.85 5.85 % % 44 1.50 3.2 0.8
Miles Wood
W NJ vs TB 4 2.82 44.4% 4000 56.2 7.1 6.95 6.95 % % 41 1.70 0.0
Brenden Dillon
D SJ vs ANA 3 2.73 58.3% 3900 26.4 5.2 7.66 7.66 % % 58 2.00 1.6 0.4
Michael Grabner
W NJ vs TB 2.82 44.4% 3900 0.00 8.0 0.00 0.00 % % 46 0.00 0.0
Alexander Kerfoot
C COL vs NSH 2 2 2.47 40.8% 3900 42.1 7.5 6.27 6.27 % % 40 1.60 1.6 0.4
Nikita Zaitsev
D TOR vs BOS 2 2.82 52.4% 3800 28.0 7.5 4.14 4.14 % % 59 1.10 4.8 1.3
Nick Ritchie
W ANA @ SJ 3 2.27 41.7% 3800 28.0 6.2 5.87 5.87 % % 51 1.50 1.6 0.4
Ondrej Kase
W ANA @ SJ 1 2 2.27 41.7% 3800 38.9 7.2 7.66 7.66 % % 43 2.00 6.4 1.7
Josh Manson
D ANA @ SJ 1 2.27 41.7% 3800 29.6 6.2 6.81 6.81 % % 54 1.80 6.4 1.7
Kevan Miller
D BOS @ TOR 2 2.68 47.6% 3700 21.6 5.6 6.71 6.71 % % 56 1.80 4.8 1.3
Ryan Hartman
W NSH @ COL 4 3.03 59.2% 3700 48.8 7.2 7.71 7.71 % % 47 2.10 3.2 0.9
Samuel Girard
D COL vs NSH 2.47 40.8% 3700 0.00 5.5 0.00 0.00 % % 48 0.00 0.0
Anton Stralman
D TB @ NJ 2 3.18 55.6% 3700 38.4 7.8 7.25 7.25 % % 59 2.00 1.6 0.4
Blake Comeau
W COL vs NSH 3 2.47 40.8% 3700 38.4 6.9 6.61 6.61 % % 49 1.80 16.8 4.5
Chris Tierney
C SJ vs ANA 3 2.73 58.3% 3700 35.7 6.2 7.81 7.81 % % 44 2.10 10.1 2.7
Mikkel Boedker
W SJ vs ANA 2 2 2.73 58.3% 3700 50.9 8.1 10.57 10.57 % % 46 2.90 11.2 3
Ron Hainsey
D TOR vs BOS 1 2.82 52.4% 3700 32.0 6.4 6.57 6.57 % % 59 1.80 11.2 3
Nikita Zadorov
D COL vs NSH 1 2.47 40.8% 3700 26.4 5.4 6.91 6.91 % % 51 1.90 3.2 0.9
Joakim Ryan
D SJ vs ANA 2.73 58.3% 3600 0.00 4.9 0.00 0.00 % % 42 0.00 0.0
Andy Greene
D NJ vs TB 1 2.82 44.4% 3600 32.8 6.7 7.20 7.20 % % 64 2.00 14.4 4
Austin Watson
W NSH @ COL 3 3.03 59.2% 3600 34.4 5.5 9.89 9.89 % % 44 2.70 15.2 4.2
Derek Grant
W ANA @ SJ 4 2.27 41.7% 3600 34.1 4.2 3.74 3.74 % % 34 1.00 9.6 2.7
Connor Carrick
D TOR vs BOS 2.82 52.4% 3600 0.00 4.3 0.00 0.00 % % 46 0.00 0.0
Brandon Montour
D ANA @ SJ 2 1 2.27 41.7% 3600 34.1 7.9 6.58 6.58 % % 61 1.80 24.5 6.8
Danton Heinen
W BOS @ TOR 3 2.68 47.6% 3600 30.6 8.3 6.11 6.11 % % 53 1.70 3.2 0.9
Kevin Bieksa
D ANA @ SJ 3 2.27 41.7% 3500 27.4 5.9 3.40 3.40 % % 59 1.00 0.0
Connor Brown
W TOR vs BOS 3 2.82 52.4% 3500 49.6 7.3 6.33 6.33 % % 46 1.80 1.6 0.5
Andreas Borgman
D TOR vs BOS 2.82 52.4% 3500 0.00 4.3 0.00 0.00 % % 39 0.00
Tim Heed
D SJ vs ANA 2.73 58.3% 3500 0.00 3.3 0.00 0.00 % % 11 0.00
Slater Koekkoek
D TB @ NJ 3.18 55.6% 3500 0.00 2.8 0.00 0.00 % % 17 0.00 0.0
Andrej Sustr
D TB @ NJ 3.18 55.6% 3500 0.00 4.2 0.00 0.00 % % 44 0.00 0.0
Matt Grzelcyk
D BOS @ TOR 2.68 47.6% 3500 0.00 5.0 0.00 0.00 % % 44 0.00 0.0
Brandon Carlo
D BOS @ TOR 2.68 47.6% 3500 0.00 4.7 0.00 0.00 % % 51 0.00 0.0
Melker Karlsson
W SJ vs ANA 4 2.73 58.3% 3500 37.6 6.6 4.39 4.39 % % 51 1.30 12.8 3.7
Nick Holden
D BOS @ TOR 3 2 2.68 47.6% 3500 30.4 6.2 4.52 4.52 % % 53 1.30 8.0 2.3
Paul Postma
D BOS @ TOR 2.68 47.6% 3500 0.00 2.8 0.00 0.00 % % 33 0.00
Jamie McBain
D TB @ NJ 3.18 55.6% 3500 0.00 4.5 0.00 0.00 % % 47 0.00
Yannick Weber
D NSH @ COL 3.03 59.2% 3500 0.00 4.4 0.00 0.00 % % 41 0.00 0.0
Matt Irwin
D NSH @ COL 3 3.03 59.2% 3500 30.9 5.4 1.88 1.88 % % 48 0.50 1.6 0.5
Travis Dermott
D TOR vs BOS 3 2.82 52.4% 3500 29.6 6.0 5.75 5.75 % % 50 1.60 1.6 0.5
David Warsofsky
D COL vs NSH 3 2 2.47 40.8% 3500 19.2 4.7 3.41 3.41 % % 57 1.00 3.2 0.9
Adam McQuaid
D BOS @ TOR 3 2.68 47.6% 3500 26.4 4.9 3.74 3.74 % % 57 1.10 20.0 5.7
Damon Severson
D NJ vs TB 2 2.82 44.4% 3500 32.0 6.2 5.97 5.97 % % 52 1.70 1.6 0.5
Alexei Emelin
D NSH @ COL 3 3.03 59.2% 3500 29.6 5.2 3.69 3.69 % % 57 1.10 1.6 0.5
John Moore
D NJ vs TB 2 2 2.82 44.4% 3500 35.7 6.7 7.23 7.23 % % 56 2.10 3.2 0.9
Mirco Mueller
D NJ vs TB 2.82 44.4% 3500 0.00 3.4 0.00 0.00 % % 35 0.00 0.0
Jake Dotchin
D TB @ NJ 3.18 55.6% 3500 0.00 4.3 0.00 0.00 % % 43 0.00 0.0
Duncan Siemens
D COL vs NSH 3 2.47 40.8% 3500 16.8 2.2 2.59 2.59 % % 10 0.70 3.2 0.9
Colton Sissons
W NSH @ COL 3 2 3.03 59.2% 3500 44.0 5.0 8.02 8.02 % % 34 2.30 16.8 4.8
Anthony Bitetto
D NSH @ COL 3.03 59.2% 3500 0.00 2.7 0.00 0.00 % % 27 0.00 0.0
Justin Holl
D TOR vs BOS 2.82 52.4% 3500 0.00 16.0 0.00 0.00 % % 0 0.00
Colin Wilson
W COL vs NSH 4 2 2.47 40.8% 3500 45.8 7.6 3.29 3.29 % % 48 0.90 4.8 1.4
Paul Martin
D SJ vs ANA 1 2.73 58.3% 3500 32.8 5.6 1.85 1.85 % % 52 0.50 3.2 0.9
Dan Girardi
D TB @ NJ 1 3.18 55.6% 3500 31.2 7.7 7.94 7.94 % % 64 2.30 3.2 0.9
Nick Bonino
C NSH @ COL 3 3.03 59.2% 3500 50.9 9.0 7.47 7.47 % % 55 2.10 3.2 0.9
Braydon Coburn
D TB @ NJ 3 3.18 55.6% 3500 26.4 4.9 5.41 5.41 % % 56 1.50 0.0
Patrik Nemeth
D COL vs NSH 2 2.47 40.8% 3500 31.2 6.0 6.37 6.37 % % 53 1.80 17.6 5
Dylan DeMelo
D SJ vs ANA 3 2.73 58.3% 3500 28.8 4.7 6.95 6.95 % % 43 2.00 6.4 1.8
Anton Lindholm
D COL vs NSH 2.47 40.8% 3500 0.00 2.2 0.00 0.00 % % 39 0.00 0.0
Ben Lovejoy
D NJ vs TB 3 2.82 44.4% 3500 29.6 5.6 4.92 4.92 % % 55 1.40 18.4 5.3
Roman Polak
D TOR vs BOS 3 2.82 52.4% 3500 29.6 5.7 5.13 5.13 % % 57 1.50 8.0 2.3
Marcus Pettersson
D ANA @ SJ 3 2 2.27 41.7% 3500 18.4 4.3 3.66 3.66 % % 49 1.00 4.8 1.4
Mark Barberio
D COL vs NSH 2 2.47 40.8% 3500 21.3 5.2 6.09 6.09 % % 55 1.70 12.8 3.7
Andrei A. Mironov
D COL vs NSH 2.47 40.8% 3500 0.00 1.6 0.00 0.00 % % 0 0.00
Francois Beauchemin
D ANA @ SJ 2 2.27 41.7% 3500 38.1 8.6 4.92 4.92 % % 61 1.40 1.6 0.5
Tommy Wingels
W BOS @ TOR 2.68 47.6% 3400 0.00 5.8 0.00 0.00 % % 43 0.00 0.0
Leo Komarov
W TOR vs BOS 2.82 52.4% 3400 0.00 6.8 0.00 0.00 % % 45 0.00 0.0
Sean Kuraly
C BOS @ TOR 4 2.68 47.6% 3400 35.2 4.9 3.48 3.48 % % 38 1.00 19.2 5.6
Jannik Hansen
W SJ vs ANA 2.73 58.3% 3400 0.00 6.5 0.00 0.00 % % 41 0.00 0.0
J.T. Compher
W COL vs NSH 4 2 2.47 40.8% 3400 30.9 7.6 4.23 4.23 % % 56 1.20 12.8 3.8
Brian Boyle
C NJ vs TB 4 2 2.82 44.4% 3400 37.3 6.6 4.11 4.11 % % 48 1.20 1.6 0.5
Jacob Larsson
D ANA @ SJ 2.27 41.7% 3400 0.00 1.2 0.00 0.00 % % 45 0.00 0.0
Blake Coleman
W NJ vs TB 3 2.82 44.4% 3300 30.4 6.4 9.28 9.28 % % 51 2.80 21.6 6.5
Tim Schaller
W BOS @ TOR 4 2.68 47.6% 3300 28.0 5.6 5.54 5.54 % % 48 1.70 8.0 2.4
Noel Acciari
C BOS @ TOR 4 2.68 47.6% 3300 20.0 4.0 4.33 4.33 % % 38 1.30 0.0
Chris Kunitz
W TB @ NJ 4 3.18 55.6% 3300 37.8 7.7 6.98 6.98 % % 51 2.10 0.0
Stefan Noesen
W NJ vs TB 3 2.82 44.4% 3300 30.4 6.0 8.61 8.61 % % 44 2.60 16.8 5.1
Antoine Vermette
C ANA @ SJ 4 2.27 41.7% 3200 39.7 6.7 0.68 0.68 % % 42 0.20 0.0
Anthony Cirelli
C TB @ NJ 3 3.18 55.6% 3200 34.4 8.2 9.78 9.78 % % 34 3.10 4.8 1.5
Eric Fehr
W SJ vs ANA 4 2.73 58.3% 3200 38.4 6.2 3.51 3.51 % % 45 1.10 16.8 5.3
Brian Gionta
W BOS @ TOR 2.68 47.6% 3200 0.00 8.3 0.00 0.00 % % 52 0.00 0.0
Cedric Paquette
C TB @ NJ 4 3.18 55.6% 3200 44.0 4.4 5.24 5.24 % % 28 1.60 1.6 0.5
Sven Andrighetto
W COL vs NSH 2 2 2.47 40.8% 3200 34.1 6.9 5.28 5.28 % % 46 1.70 1.6 0.5
Matthew Nieto
W COL vs NSH 3 2.47 40.8% 3200 42.4 5.8 6.07 6.07 % % 42 1.90 11.2 3.5
Ryan Callahan
W TB @ NJ 3.18 55.6% 3200 0.00 8.1 0.00 0.00 % % 51 0.00 0.0
Scott Hartnell
W NSH @ COL 3.03 59.2% 3200 0.00 9.0 0.00 0.00 % % 49 0.00 0.0
Eeli Tolvanen
W NSH @ COL 3.03 59.2% 3200 0.00 0.9 0.00 0.00 % % 7 0.00 0.0
Jesper Bratt
W NJ vs TB 2 2.82 44.4% 3200 36.8 6.3 0.00 0.00 % % 37 0.00 0.0
Cory Conacher
W TB @ NJ 4 3.18 55.6% 3200 27.2 4.0 2.48 2.48 % % 24 0.80 3.2 1
Andreas Johnson
W TOR vs BOS 2.82 52.4% 3200 0.00 0.00 0.00 % % 0 0.00
Drew Stafford
W NJ vs TB 4 2.82 44.4% 3100 44.8 7.1 1.97 1.97 % % 45 0.60 3.2 1
Jason Chimera
W ANA @ SJ 2.27 41.7% 3100 0.00 5.9 0.00 0.00 % % 40 0.00 0.0
Barclay Goodrow
C SJ vs ANA 2.73 58.3% 3100 0.00 4.1 0.00 0.00 % % 34 0.00 0.0
Dominic Moore
C TOR vs BOS 4 2.82 52.4% 3100 28.8 4.7 1.75 1.75 % % 40 0.60 3.2 1
Tomas Plekanec
C TOR vs BOS 2 2.82 52.4% 3100 47.4 9.5 5.58 5.58 % % 57 1.80 11.2 3.6
Joel Ward
W SJ vs ANA 2.73 58.3% 3100 0.00 7.2 0.00 0.00 % % 48 0.00 0.0
Kasperi Kapanen
W TOR vs BOS 4 2 2.82 52.4% 3100 30.4 4.1 4.51 4.51 % % 34 1.50 1.6 0.5
Brian Gibbons
W NJ vs TB 2.82 44.4% 3100 0.00 7.1 0.00 0.00 % % 50 0.00 0.0
Marcus Sorensen
W SJ vs ANA 4 2.73 58.3% 3100 16.8 3.7 3.02 3.02 % % 32 1.00 23.2 7.5
Miikka Salomaki
W NSH @ COL 4 3.03 59.2% 3100 22.4 3.1 1.88 1.88 % % 33 0.60 3.2 1
Lukas Radil
W SJ vs ANA 2.73 58.3% 3000 0.00 0.00 0.00 % % 0 0.00
Gabriel Bourque
W COL vs NSH 4 2.47 40.8% 3000 28.0 4.3 3.95 3.95 % % 38 1.30 16.8 5.6
Jordan Szwarz
C BOS @ TOR 2.68 47.6% 3000 0.00 4.1 0.00 0.00 % % 43 0.00
Nail Yakupov
W COL vs NSH 2.47 40.8% 3000 0.00 6.1 0.00 0.00 % % 45 0.00 0.0
Adam Erne
W TB @ NJ 3.18 55.6% 3000 0.00 3.9 0.00 0.00 % % 27 0.00 0.0
J.T. Brown
W ANA @ SJ 4 2.27 41.7% 3000 32.8 4.0 0.77 0.77 % % 37 0.30 0.0
Nic Kerdiles
W ANA @ SJ 2.27 41.7% 3000 0.00 0.7 0.00 0.00 % % 16 0.00
A.j. Greer
W COL vs NSH 2.47 40.8% 3000 0.00 2.0 0.00 0.00 % % 36 0.00
Dominic Toninato
W COL vs NSH 2.47 40.8% 3000 0.00 1.6 0.00 0.00 % % 32 0.00 0.0
Austin Czarnik
W BOS @ TOR 2.68 47.6% 3000 0.00 5.1 0.00 0.00 % % 46 0.00
Jimmy Hayes
W NJ vs TB 2.82 44.4% 3000 0.00 5.2 0.00 0.00 % % 29 0.00 0.0
Matthew Peca
C TB @ NJ 3.18 55.6% 3000 0.00 5.6 0.00 0.00 % % 24 0.00 0.0
Mike Fisher
C NSH @ COL 4 3.03 59.2% 3000 37.3 8.6 4.78 4.78 % % 56 1.60 1.6 0.5
Chris Kelly
C ANA @ SJ 2.27 41.7% 3000 0.00 4.8 0.00 0.00 % % 44 0.00 0.0
Vladislav Kamenev
W COL vs NSH 2.47 40.8% 3000 0.00 0.3 0.00 0.00 % % 3 0.00 0.0
Michael Bournival
W TB @ NJ 3.18 55.6% 3000 0.00 4.2 0.00 0.00 % % 27 0.00
Josh Leivo
W TOR vs BOS 2.82 52.4% 3000 0.00 2.9 0.00 0.00 % % 0 0.00 0.0
Peter Cehlarik
W BOS @ TOR 2.68 47.6% 3000 0.00 3.6 0.00 0.00 % % 33 0.00
Troy Terry
W ANA @ SJ 2.27 41.7% 3000 0.00 0.5 0.00 0.00 % % 0 0.00 0.0
Kevin Roy
W ANA @ SJ 2.27 41.7% 3000 0.00 4.9 0.00 0.00 % % 23 0.00
Matt Martin
W TOR vs BOS 2.82 52.4% 3000 0.00 3.5 0.00 0.00 % % 30 0.00 0.0
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $55,000 if left blank.

Offensive Players vs Goalie

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
BOS
@
TOR
TB
@
NJ
NSH
@
COL
ANA
@
SJ
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team and same Line or PP unit (otherwise known as stacking) this is where to do it. You can add a single stack with the remaining players not needing to be from the same team/line/PP Unit, or you can add multiple stacks per lineup so that all of the players are paired with other players from the same team/line/PP Unit.

To get started, click on the Add Stack link. You will need to select how many players you want used in the stack, which Line/PP units you want possibly stacked and which teams you would like possibly used for the first stack.

You can select multiple Lines/PP Units, or leave this blank and it will just stack players from the same team. You can also choose to stack only Forwards (Centers and Wings) or allow all positions (Centers, Wings and Defense Men) to be stacked.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 skaters from 1 team, and 4 skaters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.