Fanduel - NHL
2018-01-15
Filter Players
Apply filters
Line
Power Play Unit
Projected Score
Salary
Value
Consistency
  • ALL
  • C
  • W
  • D
  • G
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Status / Line PP Unit Goals Win % Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
Carey Price
G MTL vs NYI confirm 2.67 60% 8500 54.4 20.1 17.92 17.92 % % 65 2.10 -4.8
John Tavares
C NYI @ MTL 1 1 2.67 40% 8500 56.0 15.7 16.02 16.02 % % 65 1.90 36.8 4.3
Tyler Seguin
C DAL @ BOS 1 1 2.42 39.2% 8300 55.2 16.6 14.64 14.64 % % 65 1.80 16.8 2
Martin Jones
G SJ @ LA confirm 2.92 44.4% 8200 50.4 16.1 15.94 15.94 % % 57 1.90 36.0 4.4
Nathan MacKinnon
C COL vs ANA 1 1 2.79 51.2% 8100 53.0 13.1 21.19 21.19 % % 61 2.60 16.8 2.1
Ryan Miller
G ANA @ COL confirm 2.79 48.8% 8000 46.4 17.0 18.04 18.04 % % 60 2.30 8.8 1.1
Brad Marchand
W BOS vs DAL 1 1 3.08 60.8% 8000 60.8 13.4 17.51 17.51 % % 60 2.20 8.0 1
Chris Bigras
D COL vs ANA 2.79 51.2% 8000 0.00 2.5 0.00 0.00 % % 40 0.00
Jonathan Bernier
G COL vs ANA confirm 2.71 51.2% 7800 54.4 15.5 17.85 17.85 % % 52 2.30 34.4 4.4
Jamie Benn
W DAL @ BOS 1 1 2.42 39.2% 7800 52.5 15.5 13.24 13.24 % % 64 1.70 17.6 2.3
Patrice Bergeron
C BOS vs DAL 1 1 3.08 60.8% 7800 67.7 13.8 18.74 18.74 % % 63 2.40 6.4 0.8
Darcy Kuemper
G LA vs SJ confirm 2.58 55.6% 7700 45.6 14.7 18.81 18.81 % % 51 2.40 11.2 1.5
Anton Khudobin
G BOS vs DAL confirm 2.42 60.8% 7700 48.8 13.0 17.91 17.91 % % 47 2.30 11.2 1.5
Dennis Rasmussen
W ANA @ COL 2.71 48.8% 7600 0.00 3.8 0.00 0.00 % % 40 0.00
Brent Burns
D SJ @ LA 1 1 2.58 44.4% 7400 46.9 16.7 16.10 16.10 % % 71 2.20 8.0 1.1
David Pastrnak
W BOS vs DAL 1 1 3.08 60.8% 7400 52.8 12.3 15.94 15.94 % % 60 2.20 6.4 0.9
Ryan Getzlaf
C ANA @ COL 1 1 2.71 48.8% 7400 46.4 13.9 12.45 12.45 % % 64 1.70 4.8 0.6
Kari Lehtonen
G DAL @ BOS confirm 3.08 39.2% 7400 49.6 15.1 12.70 12.70 % % 51 1.70 28.0 3.8
Mikko Rantanen
W COL vs ANA 1 1 2.79 51.2% 7200 45.0 10.1 14.60 14.60 % % 54 2.00 3.2 0.4
Joe Pavelski
W SJ @ LA 1 1 2.58 44.4% 7200 46.9 14.6 12.09 12.09 % % 66 1.70 6.4 0.9
Thomas Greiss
G NYI @ MTL confirm 3.33 40% 7200 46.4 17.1 11.87 11.87 % % 61 1.60 37.6 5.2
Anze Kopitar
C LA vs SJ 1 1 2.92 55.6% 7100 53.5 12.1 15.60 15.60 % % 60 2.20 4.8 0.7
Josh Bailey
W NYI @ MTL 2.67 40% 6900 0.00 9.5 0.00 0.00 % % 57 0.00 0.0
Logan Couture
C SJ @ LA 2 1 2.58 44.4% 6800 53.0 13.3 10.97 10.97 % % 61 1.60 4.8 0.7
Anders Lee
W NYI @ MTL 1 1 2.67 40% 6700 41.0 10.6 13.36 13.36 % % 56 2.00 1.6 0.2
Alexander Radulov
W DAL @ BOS 1 1 2.42 39.2% 6600 42.9 11.9 12.02 12.02 % % 57 1.80 16.8 2.5
Rickard Rakell
W ANA @ COL 1 1 2.71 48.8% 6600 45.8 9.9 13.08 13.08 % % 55 2.00 3.2 0.5
Max Pacioretty
W MTL vs NYI 2 1 3.33 60% 6500 68.8 14.4 15.64 15.64 % % 64 2.40 22.1 3.4
John Klingberg
D DAL @ BOS 1 2 2.42 39.2% 6300 46.3 11.0 11.55 11.55 % % 62 1.80 14.4 2.3
Gabriel Landeskog
W COL vs ANA 1 1 2.79 51.2% 6300 62.6 11.5 12.55 12.55 % % 58 2.00 12.8 2
Dustin Brown
W LA vs SJ 1 1 2.92 55.6% 6100 46.4 8.4 11.12 11.12 % % 53 1.80 6.4 1
Drew Doughty
D LA vs SJ 1 1 2.92 55.6% 6100 32.8 11.5 13.58 13.58 % % 68 2.20 6.4 1
Jeff Carter
C LA vs SJ 2.92 55.6% 6000 0.00 12.8 0.00 0.00 % % 58 0.00
Brendan Gallagher
W MTL vs NYI 3 1 3.33 60% 6000 40.8 11.4 13.64 13.64 % % 64 2.30 11.2 1.9
Corey Perry
W ANA @ COL 1 1 2.71 48.8% 6000 52.2 12.3 9.77 9.77 % % 57 1.60 4.8 0.8
Tyler Toffoli
W LA vs SJ 2 1 2.92 55.6% 5900 53.6 10.8 12.95 12.95 % % 56 2.20 4.8 0.8
Jakob Silfverberg
W ANA @ COL 2 2 2.71 48.8% 5700 55.7 10.7 10.27 10.27 % % 57 1.80 4.8 0.8
Ryan Kesler
C ANA @ COL 2 2 2.71 48.8% 5700 45.6 11.5 10.26 10.26 % % 61 1.80 3.2 0.6
Mathew Barzal
C NYI @ MTL 2 1 2.67 40% 5600 54.4 12.5 14.08 14.08 % % 52 2.50 29.6 5.3
Shea Weber
D MTL vs NYI 3.33 60% 5600 0.00 12.8 0.00 0.00 % % 64 0.00
Joe Thornton
C SJ @ LA 1 1 2.58 44.4% 5600 45.3 10.1 9.74 9.74 % % 59 1.70 15.2 2.7
David Krejci
C BOS vs DAL 2 2 3.08 60.8% 5600 49.0 10.5 9.08 9.08 % % 58 1.60 9.6 1.7
Jordan Eberle
W NYI @ MTL 2 1 2.67 40% 5500 58.9 11.2 10.91 10.91 % % 55 2.00 17.6 3.2
David Backes
W BOS vs DAL 3 2 3.08 60.8% 5500 58.6 11.2 13.88 13.88 % % 58 2.50 3.2 0.6
Tyson Barrie
D COL vs ANA 2.79 51.2% 5400 0.00 10.8 0.00 0.00 % % 61 0.00
Nick Leddy
D NYI @ MTL 1 1 2.67 40% 5400 45.8 9.4 11.34 11.34 % % 59 2.10 3.2 0.6
Cam Fowler
D ANA @ COL 1 1 2.71 48.8% 5300 31.7 9.4 10.05 10.05 % % 64 1.90 8.0 1.5
Danton Heinen
W BOS vs DAL 3 1 3.08 60.8% 5300 30.6 9.9 13.41 13.41 % % 57 2.50 1.6 0.3
Torey Krug
D BOS vs DAL 2 1 3.08 60.8% 5200 37.0 10.9 12.31 12.31 % % 65 2.40 4.8 0.9
Jonathan Drouin
C MTL vs NYI 1 1 3.33 60% 5200 40.5 8.5 8.54 8.54 % % 53 1.60 18.4 3.5
Tanner Pearson
W LA vs SJ 2 1 2.92 55.6% 5200 41.6 8.6 10.51 10.51 % % 54 2.00 3.2 0.6
Tomas Hertl
W SJ @ LA 2 1 2.58 44.4% 5100 40.0 9.2 10.68 10.68 % % 55 2.10 3.2 0.6
Alex Galchenyuk
W MTL vs NYI 1 1 3.33 60% 5000 42.4 10.4 14.84 14.84 % % 58 3.00 26.1 5.2
Jason Spezza
C DAL @ BOS 2.42 39.2% 4800 0.00 11.3 0.00 0.00 % % 61 0.00 0.0
Alec Martinez
D LA vs SJ 2 2 2.92 55.6% 4700 37.6 10.2 10.42 10.42 % % 65 2.20 8.0 1.7
Phillip Danault
C MTL vs NYI 3.33 60% 4700 0.00 7.5 0.00 0.00 % % 49 0.00 0.0
Hampus Lindholm
D ANA @ COL 2 2 2.71 48.8% 4600 45.6 8.2 10.37 10.37 % % 58 2.30 4.8 1
Adam Henrique
C ANA @ COL 3 1 2.71 48.8% 4600 38.4 9.6 9.93 9.93 % % 55 2.20 0.0
Ryan Spooner
W BOS vs DAL 2 2 3.08 60.8% 4600 37.3 9.0 8.07 8.07 % % 56 1.80 18.4 4
Erik Johnson
D COL vs ANA 1 2 2.79 51.2% 4600 39.2 11.4 12.39 12.39 % % 67 2.70 14.9 3.2
Johnny Boychuk
D NYI @ MTL 2.67 40% 4500 0.00 10.7 0.00 0.00 % % 66 0.00
Charlie McAvoy
D BOS vs DAL 1 2 3.08 60.8% 4500 23.7 8.8 9.53 9.53 % % 62 2.10 8.0 1.8
Jake Muzzin
D LA vs SJ 2.92 55.6% 4500 0.00 10.5 0.00 0.00 % % 64 0.00
Marian Gaborik
W LA vs SJ 4 2 2.92 55.6% 4400 37.3 9.3 9.40 9.40 % % 55 2.10 12.8 2.9
Adrian Kempe
C LA vs SJ 2 2 2.92 55.6% 4400 53.6 6.7 7.22 7.22 % % 36 1.60 9.6 2.2
Jake DeBrusk
W BOS vs DAL 2 2 3.08 60.8% 4300 35.4 10.2 12.21 12.21 % % 54 2.80 0.0
Patrick Eaves
W ANA @ COL 2.71 48.8% 4300 0.00 10.1 0.00 0.00 % % 55 0.00
Riley Nash
C BOS vs DAL 3 3.08 60.8% 4300 40.0 6.3 10.08 10.08 % % 48 2.30 9.6 2.2
Mattias Janmark
W DAL @ BOS 2 2 2.42 39.2% 4300 32.0 7.5 7.83 7.83 % % 54 1.80 0.0
Josh Manson
D ANA @ COL 2 2.71 48.8% 4300 24.0 5.9 9.03 9.03 % % 55 2.10 12.8 3
Andrew Ladd
W NYI @ MTL 2.67 40% 4200 0.00 10.1 0.00 0.00 % % 58 0.00
Justin Braun
D SJ @ LA 2 2.58 44.4% 4200 35.2 7.6 8.69 8.69 % % 63 2.10 12.8 3
Alexander Kerfoot
C COL vs ANA 3 2 2.79 51.2% 4200 42.1 8.8 9.87 9.87 % % 42 2.40 10.1 2.4
Kevin Labanc
W SJ @ LA 2 2 2.58 44.4% 4100 43.4 6.3 6.75 6.75 % % 40 1.60 3.2 0.8
Andrew Shaw
W MTL vs NYI 3.33 60% 4100 0.00 7.9 0.00 0.00 % % 51 0.00
Marc-Edouard Vlasic
D SJ @ LA 2 2 2.58 44.4% 4000 45.3 9.6 9.48 9.48 % % 63 2.40 8.0 2
Timo Meier
W SJ @ LA 1 2 2.58 44.4% 3900 32.5 6.9 8.46 8.46 % % 54 2.20 6.4 1.6
Stephen Johns
D DAL @ BOS 3 2.42 39.2% 3900 22.4 6.5 5.52 5.52 % % 60 1.40 18.4 4.7
Ondrej Kase
W ANA @ COL 3 2 2.71 48.8% 3900 38.9 6.6 9.88 9.88 % % 41 2.50 4.8 1.2
Esa Lindell
D DAL @ BOS 1 2 2.42 39.2% 3900 30.4 7.6 8.05 8.05 % % 58 2.10 4.8 1.2
Joonas Donskoi
W SJ @ LA 3 2 2.58 44.4% 3900 40.0 7.3 8.53 8.53 % % 48 2.20 20.8 5.3
Calvin de Haan
D NYI @ MTL 2.67 40% 3900 0.00 8.1 0.00 0.00 % % 67 0.00
Patrik Nemeth
D COL vs ANA 2 2.79 51.2% 3900 31.2 5.9 9.99 9.99 % % 50 2.60 1.6 0.4
Brandon Montour
D ANA @ COL 3 2 2.71 48.8% 3900 27.4 8.1 8.47 8.47 % % 60 2.20 6.4 1.6
Zdeno Chara
D BOS vs DAL 1 3.08 60.8% 3900 34.4 9.2 9.47 9.47 % % 63 2.40 23.2 5.9
Andrew Cogliano
W ANA @ COL 2.71 48.8% 3800 0.00 7.2 0.00 0.00 % % 53 0.00 0.0
Tomas Plekanec
C MTL vs NYI 3 3.33 60% 3800 47.4 10.0 8.98 8.98 % % 59 2.40 9.6 2.5
Radek Faksa
C DAL @ BOS 3 2.42 39.2% 3800 44.0 7.4 7.33 7.33 % % 49 1.90 3.2 0.8
Brock Nelson
W NYI @ MTL 3 2 2.67 40% 3800 52.0 9.2 5.65 5.65 % % 54 1.50 1.6 0.4
Brenden Dillon
D SJ @ LA 1 2.58 44.4% 3700 26.4 5.0 5.28 5.28 % % 59 1.40 8.0 2.2
Antoine Vermette
W ANA @ COL 4 2.71 48.8% 3700 39.7 7.4 7.11 7.11 % % 46 1.90 4.8 1.3
Samuel Girard
D COL vs ANA 3 1 2.79 51.2% 3700 26.9 4.9 5.37 5.37 % % 41 1.50 4.8 1.3
Nick Ritchie
W ANA @ COL 3 2.71 48.8% 3700 28.0 6.1 5.66 5.66 % % 51 1.50 4.8 1.3
Carl Soderberg
C COL vs ANA 2 2 2.79 51.2% 3700 37.8 8.2 9.61 9.61 % % 53 2.60 11.2 3
Paul Byron
W MTL vs NYI 2 3.33 60% 3700 42.4 6.5 9.14 9.14 % % 42 2.50 13.6 3.7
Noel Acciari
W BOS vs DAL 4 3.08 60.8% 3700 20.0 4.2 6.76 6.76 % % 41 1.80 0.0
Jordie Benn
D MTL vs NYI 2 3.33 60% 3600 29.6 6.4 10.25 10.25 % % 60 2.80 6.4 1.8
Tim Heed
D SJ @ LA 2.58 44.4% 3600 0.00 6.1 0.00 0.00 % % 44 0.00 0.0
Kevan Miller
D BOS vs DAL 3 3.08 60.8% 3600 21.6 5.7 6.06 6.06 % % 58 1.70 3.2 0.9
Anders Bjork
W BOS vs DAL 3.08 60.8% 3600 0.00 5.7 0.00 0.00 % % 28 0.00
J.T. Compher
W COL vs ANA 2.79 51.2% 3600 0.00 8.6 0.00 0.00 % % 65 0.00
Greg Pateryn
D DAL @ BOS 2 2.42 39.2% 3600 20.0 4.9 4.86 4.86 % % 54 1.40 4.8 1.3
Ryan Pulock
D NYI @ MTL 3 2 2.67 40% 3600 26.9 5.7 6.25 6.25 % % 39 1.70 4.8 1.3
Tyson Jost
W COL vs ANA 4 1 2.79 51.2% 3600 21.6 5.5 5.73 5.73 % % 47 1.60 6.4 1.8
Colin Wilson
W COL vs ANA 4 2 2.79 51.2% 3600 45.8 8.2 5.81 5.81 % % 51 1.60 15.7 4.4
Blake Comeau
W COL vs ANA 2 2.79 51.2% 3600 38.4 6.8 7.29 7.29 % % 48 2.00 9.6 2.7
Chris Tierney
C SJ @ LA 3 2 2.58 44.4% 3600 35.7 5.9 7.73 7.73 % % 42 2.10 26.4 7.3
Tim Schaller
W BOS vs DAL 4 3.08 60.8% 3600 28.0 5.5 7.35 7.35 % % 47 2.00 0.0
Derek Grant
C ANA @ COL 2 2.71 48.8% 3600 34.1 4.6 5.30 5.30 % % 42 1.50 3.2 0.9
Scott Mayfield
D NYI @ MTL 1 2.67 40% 3600 26.4 6.6 5.65 5.65 % % 49 1.60 6.4 1.8
Derek Forbort
D LA vs SJ 3 2.92 55.6% 3600 28.8 6.6 6.97 6.97 % % 61 1.90 3.2 0.9
Martin Hanzal
C DAL @ BOS 2 2 2.42 39.2% 3600 45.5 9.4 3.79 3.79 % % 51 1.10 3.2 0.9
Jeff Petry
D MTL vs NYI 1 1 3.33 60% 3600 38.1 8.6 12.69 12.69 % % 62 3.50 19.7 5.5
Antoine Roussel
W DAL @ BOS 3 2.42 39.2% 3600 48.8 6.7 4.98 4.98 % % 46 1.40 4.8 1.3
Nikita Zadorov
D COL vs ANA 1 2.79 51.2% 3600 26.4 5.2 7.53 7.53 % % 50 2.10 3.2 0.9
Joe Morrow
D MTL vs NYI 3.33 60% 3600 0.00 4.6 0.00 0.00 % % 41 0.00 0.0
Kevin Bieksa
D ANA @ COL 1 2.71 48.8% 3500 27.4 6.1 4.70 4.70 % % 61 1.30 4.8 1.4
Karl Alzner
D MTL vs NYI 1 3.33 60% 3500 27.2 6.8 7.09 7.09 % % 61 2.00 9.6 2.7
Kurtis MacDermid
D LA vs SJ 2 2.92 55.6% 3500 19.2 2.5 2.74 2.74 % % 23 0.80 1.6 0.5
Brett Lernout
D MTL vs NYI 3.33 60% 3500 0.00 1.6 0.00 0.00 % % 33 0.00
Matt Grzelcyk
D BOS vs DAL 3 3.08 60.8% 3500 19.2 4.8 5.50 5.50 % % 50 1.60 12.8 3.7
Brandon Carlo
D BOS vs DAL 2 3.08 60.8% 3500 20.0 5.2 3.75 3.75 % % 52 1.10 4.8 1.4
Andy Welinski
D ANA @ COL 2.71 48.8% 3500 0.00 3.0 0.00 0.00 % % 27 0.00
Julius Honka
D DAL @ BOS 3 2.42 39.2% 3500 21.6 4.1 2.49 2.49 % % 37 0.70 0.0
Paul Postma
D BOS vs DAL 3.08 60.8% 3500 0.00 3.1 0.00 0.00 % % 38 0.00 0.0
Adam Pelech
D NYI @ MTL 2 2.67 40% 3500 28.8 6.1 7.37 7.37 % % 56 2.10 20.0 5.7
Marc Methot
D DAL @ BOS 2.42 39.2% 3500 0.00 5.2 0.00 0.00 % % 52 0.00
Jakub Jerabek
D MTL vs NYI 2 3.33 60% 3500 8.0 2.9 3.61 3.61 % % 62 1.00 24.0 6.9
Adam McQuaid
D BOS vs DAL 3.08 60.8% 3500 0.00 5.1 0.00 0.00 % % 58 0.00
Oscar Fantenberg
D LA vs SJ 2.92 55.6% 3500 0.00 3.7 0.00 0.00 % % 30 0.00 0.0
Dennis Seidenberg
D NYI @ MTL 2.67 40% 3500 0.00 6.2 0.00 0.00 % % 54 0.00 0.0
Christian Folin
D LA vs SJ 3 2.92 55.6% 3500 18.4 4.4 4.37 4.37 % % 48 1.20 8.0 2.3
Joakim Ryan
D SJ @ LA 3 2.58 44.4% 3500 22.4 5.1 5.05 5.05 % % 51 1.40 4.8 1.4
Thomas Hickey
D NYI @ MTL 3 2.67 40% 3500 26.1 6.4 5.49 5.49 % % 55 1.60 14.4 4.1
Sebastian Aho
D NYI @ MTL 2 2 2.67 40% 3500 26.9 6.3 6.90 6.90 % % 18 2.00 1.6 0.5
Daniel Carr
W MTL vs NYI 1 2 3.33 60% 3500 31.2 6.3 8.62 8.62 % % 48 2.50 0.0
Kevin Gravel
D LA vs SJ 1 2 2.92 55.6% 3500 16.0 4.4 5.53 5.53 % % 52 1.60 8.0 2.3
Trevor Lewis
W LA vs SJ 2 2.92 55.6% 3500 34.9 6.7 0.00 0.00 % % 53 0.00 21.6 6.2
Dan Hamhuis
D DAL @ BOS 2 2.42 39.2% 3500 25.6 6.0 5.05 5.05 % % 56 1.40 9.6 2.7
Paul Martin
D SJ @ LA 2.58 44.4% 3500 0.00 5.9 0.00 0.00 % % 54 0.00 0.0
Sven Andrighetto
W COL vs ANA 2.79 51.2% 3500 0.00 7.0 0.00 0.00 % % 47 0.00 0.0
Devin Shore
W DAL @ BOS 2 2 2.42 39.2% 3500 32.0 7.3 6.36 6.36 % % 53 1.80 1.6 0.5
Matthew Nieto
W COL vs ANA 2 2.79 51.2% 3500 42.4 5.7 6.79 6.79 % % 41 1.90 20.0 5.7
Casey Cizikas
C NYI @ MTL 2.67 40% 3500 0.00 6.3 0.00 0.00 % % 48 0.00 0.0
David Schlemko
D MTL vs NYI 3 2 3.33 60% 3500 33.3 6.5 5.70 5.70 % % 57 1.60 14.4 4.1
Jacob Larsson
D ANA @ COL 2.71 48.8% 3500 0.00 1.2 0.00 0.00 % % 45 0.00
Dylan DeMelo
D SJ @ LA 3 2.58 44.4% 3500 17.3 4.1 3.11 3.11 % % 44 0.90 22.4 6.4
Anton Lindholm
D COL vs ANA 3 2.79 51.2% 3500 6.4 2.4 2.45 2.45 % % 58 0.70 1.6 0.5
Mark Barberio
D COL vs ANA 2 2.79 51.2% 3500 21.3 5.1 6.53 6.53 % % 54 1.90 3.2 0.9
Korbinian Holzer
D ANA @ COL 2.71 48.8% 3500 0.00 3.0 0.00 0.00 % % 31 0.00 4.8 1.4
Andrei A. Mironov
D COL vs ANA 2.79 51.2% 3500 0.00 2.2 0.00 0.00 % % 0 0.00
Jaycob Megna
D ANA @ COL 2.71 48.8% 3500 0.00 2.7 0.00 0.00 % % 28 0.00
Francois Beauchemin
D ANA @ COL 3 2.71 48.8% 3500 38.1 9.0 5.87 5.87 % % 62 1.70 0.0
Victor Mete
D MTL vs NYI 3 2 3.33 60% 3500 17.6 4.2 5.56 5.56 % % 43 1.60 3.2 0.9
Melker Karlsson
W SJ @ LA 4 2.58 44.4% 3400 37.6 6.9 5.21 5.21 % % 53 1.50 3.2 0.9
Remi Elie
W DAL @ BOS 4 2.42 39.2% 3400 21.6 4.2 3.51 3.51 % % 38 1.00 8.0 2.4
Cal Clutterbuck
W NYI @ MTL 4 2.67 40% 3400 28.8 5.8 7.04 7.04 % % 47 2.10 3.2 0.9
Artturi Lehkonen
W MTL vs NYI 3 2 3.33 60% 3400 40.0 7.7 8.84 8.84 % % 49 2.60 6.4 1.9
Tyler Pitlick
W DAL @ BOS 3 2.42 39.2% 3400 33.6 6.5 6.17 6.17 % % 48 1.80 12.8 3.8
Sean Kuraly
C BOS vs DAL 4 3.08 60.8% 3300 35.2 5.5 6.27 6.27 % % 44 1.90 1.6 0.5
Kyle Clifford
W LA vs SJ 2.92 55.6% 3300 0.00 4.1 0.00 0.00 % % 38 0.00 6.4 1.9
Jannik Hansen
W SJ @ LA 2.58 44.4% 3300 0.00 7.0 0.00 0.00 % % 44 0.00 0.0
Charles Hudon
W MTL vs NYI 2 2 3.33 60% 3300 42.1 7.7 9.07 9.07 % % 52 2.70 9.6 2.9
Mikkel Boedker
W SJ @ LA 3 2.58 44.4% 3300 50.9 7.8 3.88 3.88 % % 44 1.20 16.8 5.1
Brett Ritchie
W DAL @ BOS 4 1 2.42 39.2% 3200 30.4 6.3 3.81 3.81 % % 49 1.20 9.6 3
Gemel Smith
W DAL @ BOS 4 2.42 39.2% 3200 35.2 3.9 3.24 3.24 % % 16 1.00 1.6 0.5
Byron Froese
W MTL vs NYI 4 3.33 60% 3200 32.8 3.7 5.56 5.56 % % 32 1.70 1.6 0.5
Nail Yakupov
W COL vs ANA 3 2 2.79 51.2% 3200 34.1 6.9 5.22 5.22 % % 50 1.60 3.2 1
J.T. Brown
W ANA @ COL 4 2.71 48.8% 3200 32.8 4.3 1.76 1.76 % % 40 0.60 9.6 3
Nick Shore
C LA vs SJ 3 2.92 55.6% 3200 42.4 4.3 5.48 5.48 % % 39 1.70 0.0
Peter Cehlarik
W BOS vs DAL 3.08 60.8% 3200 0.00 3.7 0.00 0.00 % % 34 0.00
Torrey Mitchell
C LA vs SJ 4 2.92 55.6% 3200 32.0 4.4 3.27 3.27 % % 35 1.00 1.6 0.5
Alex Iafallo
W LA vs SJ 1 2.92 55.6% 3100 21.3 6.1 6.63 6.63 % % 53 2.10 3.2 1
Jason Chimera
W NYI @ MTL 4 2.67 40% 3100 37.8 6.4 4.64 4.64 % % 44 1.50 0.0
Frank Vatrano
W BOS vs DAL 3.08 60.8% 3100 0.00 6.3 0.00 0.00 % % 37 0.00 0.0
Anthony Beauvillier
W NYI @ MTL 2 2.67 40% 3100 36.8 5.9 4.61 4.61 % % 44 1.50 16.8 5.4
Nicolas Deslauriers
W MTL vs NYI 4 3.33 60% 3100 31.2 3.7 6.62 6.62 % % 29 2.10 15.2 4.9
Joel Ward
W SJ @ LA 4 2.58 44.4% 3100 42.4 7.6 4.00 4.00 % % 50 1.30 0.0
Shane Prince
W NYI @ MTL 3 2 2.67 40% 3100 40.0 5.4 3.88 3.88 % % 35 1.30 3.2 1
Logan Shaw
W ANA @ COL 2.71 48.8% 3100 0.00 4.1 0.00 0.00 % % 43 0.00 0.0
Steve Bernier
W NYI @ MTL 2.67 40% 3000 0.00 6.6 0.00 0.00 % % 41 0.00
Andy Andreoff
W LA vs SJ 3 2.92 55.6% 3000 21.6 2.8 3.03 3.03 % % 21 1.00 3.2 1.1
Jason Dickinson
C DAL @ BOS 2.42 39.2% 3000 0.00 2.8 0.00 0.00 % % 9 0.00
Jussi Jokinen
W LA vs SJ 4 2.92 55.6% 3000 32.8 8.1 3.08 3.08 % % 53 1.00 0.0
Daniel O'Regan
W SJ @ LA 2.58 44.4% 3000 0.00 3.4 0.00 0.00 % % 16 0.00
Jared Boll
W ANA @ COL 2.71 48.8% 3000 0.00 1.5 0.00 0.00 % % 7 0.00 0.0
Barclay Goodrow
W SJ @ LA 4 2.58 44.4% 3000 24.8 3.8 2.78 2.78 % % 32 0.90 18.4 6.1
Joseph Blandisi
W ANA @ COL 2.71 48.8% 3000 0.00 5.1 0.00 0.00 % % 34 0.00
Gabriel Bourque
W COL vs ANA 4 2.79 51.2% 3000 28.0 4.1 2.81 2.81 % % 36 0.90 1.6 0.5
Jordan Szwarz
C BOS vs DAL 3.08 60.8% 3000 0.00 5.5 0.00 0.00 % % 57 0.00
Ales Hemsky
W MTL vs NYI 3.33 60% 3000 0.00 8.0 0.00 0.00 % % 53 0.00
Alan Quine
W NYI @ MTL 1 2.67 40% 3000 22.1 4.4 1.55 1.55 % % 42 0.50 0.0
A.j. Greer
W COL vs ANA 3 2.79 51.2% 3000 8.0 3.1 5.31 5.31 % % 57 1.80 0.0
Jacob De La Rose
W MTL vs NYI 4 3.33 60% 3000 35.2 3.1 3.09 3.09 % % 19 1.00 4.8 1.6
Michael Amadio
W LA vs SJ 2.92 55.6% 3000 0.00 2.0 0.00 0.00 % % 0 0.00
Michael McCarron
W MTL vs NYI 3.33 60% 3000 0.00 3.8 0.00 0.00 % % 46 0.00
Rocco Grimaldi
W COL vs ANA 2.79 51.2% 3000 0.00 5.7 0.00 0.00 % % 43 0.00
Austin Czarnik
W BOS vs DAL 3.08 60.8% 3000 0.00 4.9 0.00 0.00 % % 43 0.00
Joshua Ho-Sang
W NYI @ MTL 2.67 40% 3000 0.00 5.7 0.00 0.00 % % 39 0.00
Tanner Fritz
W NYI @ MTL 4 2.67 40% 3000 0.0 0.0 2.26 2.26 % % 0 0.80 1.6 0.5
Curtis McKenzie
W DAL @ BOS 2.42 39.2% 3000 0.00 4.9 0.00 0.00 % % 42 0.00
Chris Wagner
C ANA @ COL 4 2.71 48.8% 3000 30.9 4.5 4.55 4.55 % % 36 1.50 18.4 6.1
Marcus Sorensen
W SJ @ LA 2.58 44.4% 3000 0.00 4.5 0.00 0.00 % % 41 0.00
Kevin Roy
W ANA @ COL 2.71 48.8% 3000 0.00 4.9 0.00 0.00 % % 23 0.00
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $55,000 if left blank.

Offensive Players vs Goalie

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
DAL
@
BOS
ANA
@
COL
SJ
@
LA
NYI
@
MTL
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team and same Line or PP unit (otherwise known as stacking) this is where to do it. You can add a single stack with the remaining players not needing to be from the same team/line/PP Unit, or you can add multiple stacks per lineup so that all of the players are paired with other players from the same team/line/PP Unit.

To get started, click on the Add Stack link. You will need to select how many players you want used in the stack, which Line/PP units you want possibly stacked and which teams you would like possibly used for the first stack.

You can select multiple Lines/PP Units, or leave this blank and it will just stack players from the same team. You can also choose to stack only Forwards (Centers and Wings) or allow all positions (Centers, Wings and Defense Men) to be stacked.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 skaters from 1 team, and 4 skaters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.