Draftkingsshowdown - MLB
2018-06-13
Filter Players
Apply filters
Batting Order
Projected Score
Salary
Value
Consistency
  • Pitchers
  • Hitters
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Win % Runs vs. Pitcher Hand ERA/AVG wOBA ISO Avg innings K/9 WHIP Order Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
Jacob deGrom
P NYM @ ATL 50% 3.75 Soroka, 3.68 R 1.60 0.000 0.000 6.10 12.1 1.00 19400 39.9 25.5 21.02 21.02 % % 63 1.1 23.55 1.2
Mike Soroka
P ATL vs NYM 50% 3.75 deGrom, R 1.60 3.68 0.000 0.000 4.90 9.2 1.70 13000 31.2 13.3 13.34 13.34 % % 33 1 25.05 1.9
Freddie Freeman
H ATL vs NYM 50% 3.75 deGrom, R 1.60 L 0.337 0.432 0.241 0.00 0.0 0.00 3 10000 26.5 10.4 9.87 9.87 % % 60 1 19.00 1.9
Ozzie Albies
H ATL vs NYM 50% 3.75 deGrom, R 1.60 B 0.252 0.336 0.252 0.00 0.0 0.00 1 9500 26.9 9.6 9.13 9.13 % % 54 1 3.00 0.3
Brandon Nimmo
H NYM @ ATL 50% 3.75 Soroka, 3.68 L 0.273 0.419 0.287 0.00 0.0 0.00 3 8900 24 7.5 8.25 8.25 % % 47 0.9 5.00 0.6
Nick Markakis
H ATL vs NYM 50% 3.75 deGrom, R 1.60 L 0.330 0.387 0.169 0.00 0.0 0.00 4 8500 21.7 9.0 8.17 8.17 % % 63 1 0.00
Todd Frazier
H NYM @ ATL 50% 3.75 Soroka, 3.68 R 0.234 0.337 0.190 0.00 0.0 0.00 2 8300 24.1 8.2 8.25 8.25 % % 52 1 0.00
Dansby Swanson
H ATL vs NYM 50% 3.75 deGrom, R 1.60 R 0.271 0.337 0.182 0.00 0.0 0.00 2 8000 22.1 7.6 7.11 7.11 % % 51 0.9 7.00 0.9
Ender Inciarte
H ATL vs NYM 50% 3.75 deGrom, R 1.60 L 0.248 0.290 0.093 0.00 0.0 0.00 7 7600 19.7 7.9 4.41 4.41 % % 52 0.6 5.00 0.7
Michael Conforto
H NYM @ ATL 50% 3.75 Soroka, 3.68 L 0.215 0.316 0.144 0.00 0.0 0.00 1 7200 19.3 6.1 7.11 7.11 % % 50 1 5.00 0.7
Johan Camargo
H ATL vs NYM 50% 3.75 deGrom, R 1.60 B 0.209 0.336 0.202 0.00 0.0 0.00 8 5900 15.3 6.1 3.51 3.51 % % 52 0.6 8.00 1.4
Dominic Smith
H NYM @ ATL 50% 3.75 Soroka, 3.68 L 0.250 0.225 0.000 0.00 0.0 0.00 6 5700 7.8 1.5 4.80 4.80 % % 0 0.8 2.00 0.4
Kurt Suzuki
H ATL vs NYM 50% 3.75 deGrom, R 1.60 R 0.275 0.350 0.203 0.00 0.0 0.00 5 5400 22.2 7.1 5.44 5.44 % % 41 1 3.00 0.6
Jay Bruce
H NYM @ ATL 50% 3.75 Soroka, 3.68 L 0.224 0.290 0.114 0.00 0.0 0.00 4 4900 19.1 5.2 6.42 6.42 % % 39 1.3 2.00 0.4
Kevin Plawecki
H NYM @ ATL 50% 3.75 Soroka, 3.68 R 0.213 0.330 0.085 0.00 0.0 0.00 5 4700 15.8 5.5 5.26 5.26 % % 52 1.1 0.00
Amed Rosario
H NYM @ ATL 50% 3.75 Soroka, 3.68 R 0.240 0.270 0.110 0.00 0.0 0.00 7 4200 15.3 5.1 3.71 3.71 % % 43 0.9 0.00
Luis Guillorme
H NYM @ ATL 50% 3.75 Soroka, 3.68 L 0.167 0.180 0.021 0.00 0.0 0.00 8 4100 8.5 1.8 3.11 3.11 % % 25 0.8 0.00
Charlie Culberson
H ATL vs NYM 50% 3.75 deGrom, R 1.60 R 0.258 0.301 0.113 0.00 0.0 0.00 6 3800 14.9 4.5 4.28 4.28 % % 41 1.1 0.00
Mike Montgomery
P CHC @ MIL 47.2% 4.38 Chacin, R 3.58 L 4.00 0.000 0.000 2.00 5.4 1.18 14100 21.7 4.0 7.76 7.76 % % 0 0.6 17.70 1.3
Jhoulys Chacin
P MIL vs CHC 52.8% 4.12 Montgomery, L 4.00 R 3.58 0.000 0.000 5.40 6.8 1.25 13100 31.9 13.2 12.86 12.86 % % 28 1 27.30 2.1
Christian Yelich
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 L 0.307 0.375 0.174 0.00 0.0 0.00 2 10100 27.1 9.3 11.40 11.40 % % 58 1.1 0.00
Anthony Rizzo
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 L 0.239 0.338 0.195 0.00 0.0 0.00 4 9800 27.1 8.7 11.96 11.96 % % 56 1.2 0.00
Ryan Braun
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 R 0.249 0.328 0.214 0.00 0.0 0.00 3 9200 26.8 7.5 10.41 10.41 % % 46 1.1 0.00
Lorenzo Cain
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 R 0.283 0.362 0.144 0.00 0.0 0.00 1 8900 25.1 8.6 10.04 10.04 % % 56 1.1 24.00 2.7
Javier Baez
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 R 0.261 0.350 0.291 0.00 0.0 0.00 7 8600 25.8 9.7 6.90 6.90 % % 51 0.8 13.00 1.5
Jesus Aguilar
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 R 0.285 0.377 0.250 0.00 0.0 0.00 4 8000 26.6 7.4 9.05 9.05 % % 41 1.1 3.00 0.4
Travis Shaw
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 L 0.251 0.364 0.255 0.00 0.0 0.00 5 7700 24 8.2 8.70 8.70 % % 53 1.1 2.00 0.3
Kyle Schwarber
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 L 0.251 0.367 0.235 0.00 0.0 0.00 6 7400 23.1 7.8 7.66 7.66 % % 50 1 3.00 0.4
Ben Zobrist
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 B 0.282 0.353 0.135 0.00 0.0 0.00 1 7100 24.3 7.3 9.07 9.07 % % 48 1.3 2.00 0.3
Jason Heyward
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 L 0.275 0.324 0.135 0.00 0.0 0.00 2 6200 21.3 6.7 8.56 8.56 % % 53 1.4 2.00 0.3
Ian Happ
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 B 0.207 0.327 0.180 0.00 0.0 0.00 5 6000 20.3 6.0 7.14 7.14 % % 45 1.2 3.00 0.5
Erik Kratz
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 R 0.435 0.567 0.435 0.00 0.0 0.00 7 5700 13 13.2 5.07 5.07 % % 85 0.9 0.00
Hernan Perez
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 R 0.252 0.277 0.109 0.00 0.0 0.00 6 4900 15.3 4.1 5.19 5.19 % % 38 1.1 5.00 1
Orlando Arcia
H MIL vs CHC 52.8% 4.38 Montgomery, L 4.00 R 0.199 0.224 0.064 0.00 0.0 0.00 8 4300 13.1 3.8 3.58 3.58 % % 37 0.8 3.00 0.7
Tommy La Stella
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 L 0.295 0.320 0.026 0.00 0.0 0.00 3 4200 12.1 2.6 5.92 5.92 % % 41 1.4 3.00 0.7
Chris Gimenez
H CHC @ MIL 47.2% 4.12 Chacin, R 3.58 R 0.214 0.193 0.000 0.00 0.0 0.00 8 4100 8.8 2.2 3.34 3.34 % % 38 0.8 7.00 1.7
Garrett Richards
P LAA @ SEA 51.9% 3.92 Gonzales, L 2.65 R 3.26 0.000 0.000 5.10 10.2 1.27 14700 37.9 16.8 13.88 13.88 % % 29 0.9 2.10 0.1
Marco Gonzales
P SEA vs LAA 48.1% 4.08 Richards, R 3.26 L 2.65 0.000 0.000 5.70 7.7 1.16 13900 32.6 17.4 15.10 15.10 % % 50 1.1 13.85 1
Mike Trout
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.310 0.465 0.372 0.00 0.0 0.00 2 11800 34.3 11.9 14.23 14.23 % % 58 1.2 14.00 1.2
Jean Segura
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 R 0.352 0.371 0.144 0.00 0.0 0.00 2 9700 27.1 10.1 9.87 9.87 % % 57 1 15.00 1.5
Nelson Cruz
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 R 0.260 0.375 0.270 0.00 0.0 0.00 4 9400 26.1 8.5 9.64 9.64 % % 52 1 16.00 1.7
Justin Upton
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.255 0.350 0.215 0.00 0.0 0.00 3 9100 24.8 8.4 9.98 9.98 % % 56 1.1 3.00 0.3
Mitch Haniger
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 R 0.272 0.374 0.251 0.00 0.0 0.00 3 8800 25.3 8.9 8.09 8.09 % % 52 0.9 21.00 2.4
Denard Span
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 L 0.256 0.351 0.161 0.00 0.0 0.00 5 8400 20.4 7.9 7.08 7.08 % % 58 0.8 8.00 1
Dee Gordon
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 L 0.284 0.289 0.079 0.00 0.0 0.00 1 8100 22.3 7.8 7.54 7.54 % % 53 0.9 5.00 0.6
Ian Kinsler
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.220 0.292 0.164 0.00 0.0 0.00 1 7800 23.9 7.1 8.61 8.61 % % 46 1.1 9.00 1.2
Albert Pujols
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.252 0.304 0.163 0.00 0.0 0.00 4 7200 21.1 7.0 8.61 8.61 % % 55 1.2 3.00 0.4
Mike Zunino
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 R 0.205 0.306 0.240 0.00 0.0 0.00 8 6800 17.8 6.4 3.79 3.79 % % 45 0.6 7.00 1
Ryon Healy
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 R 0.239 0.309 0.223 0.00 0.0 0.00 6 6500 22.2 7.1 5.17 5.17 % % 40 0.8 22.00 3.4
Zack Cozart
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.219 0.291 0.143 0.00 0.0 0.00 5 6100 19.3 6.4 6.96 6.96 % % 52 1.1 2.00 0.3
Ben Gamel
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 L 0.299 0.349 0.111 0.00 0.0 0.00 7 5500 13 5.5 3.88 3.88 % % 58 0.7 7.00 1.3
Luis Valbuena
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 L 0.231 0.288 0.133 0.00 0.0 0.00 8 5000 17.3 4.9 4.05 4.05 % % 32 0.8 2.00 0.4
Martin Maldonado
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.249 0.295 0.112 0.00 0.0 0.00 6 4700 17.3 5.3 4.93 4.93 % % 42 1 5.00 1.1
Chris Young
H LAA @ SEA 51.9% 4.08 Gonzales, L 2.65 R 0.154 0.237 0.103 0.00 0.0 0.00 7 4300 12.9 3.6 4.28 4.28 % % 40 1 29.00 6.7
Andrew Romine
H SEA vs LAA 48.1% 3.92 Richards, R 3.26 L 0.157 0.193 0.020 0.00 0.0 0.00 9 4000 9.6 2.4 2.19 2.19 % % 23 0.5 0.00
Kenta Maeda
P LAD vs TEX 64% 3.38 Hamels, L 3.86 R 3.61 0.000 0.000 4.80 11.6 1.28 15400 46.6 17.0 19.16 19.16 % % 19 1.2 3.85 0.3
Cole Hamels
P TEX @ LAD 36% 4.62 Maeda, R 3.61 L 3.86 0.000 0.000 6.10 9.0 1.24 14600 29.1 16.6 13.17 13.17 % % 52 0.9 18.10 1.2
Matt Kemp
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.333 0.393 0.229 0.00 0.0 0.00 3 9300 25.4 7.6 9.84 9.84 % % 49 1.1 3.00 0.3
Joey Gallo
H TEX @ LAD 36% 3.38 Maeda, R 3.61 L 0.199 0.322 0.259 0.00 0.0 0.00 6 8900 20.4 7.4 5.27 5.27 % % 49 0.6 5.00 0.6
Shin-Soo Choo
H TEX @ LAD 36% 3.38 Maeda, R 3.61 L 0.278 0.377 0.196 0.00 0.0 0.00 1 8600 21.7 8.6 7.45 7.45 % % 59 0.9 11.00 1.3
Chris Taylor
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.250 0.339 0.193 0.00 0.0 0.00 1 8300 23.3 7.9 9.59 9.59 % % 57 1.2 5.00 0.6
Cody Bellinger
H LAD vs TEX 64% 4.62 Hamels, L 3.86 L 0.238 0.341 0.234 0.00 0.0 0.00 5 8100 22.9 7.7 8.52 8.52 % % 53 1.1 9.00 1.1
Nomar Mazara
H TEX @ LAD 36% 3.38 Maeda, R 3.61 L 0.270 0.360 0.230 0.00 0.0 0.00 3 7800 22.4 8.2 7.45 7.45 % % 55 1 0.00
Yasiel Puig
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.272 0.347 0.208 0.00 0.0 0.00 6 7500 21.6 7.6 7.00 7.00 % % 52 0.9 13.00 1.7
Justin Turner
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.250 0.305 0.111 0.00 0.0 0.00 2 7300 21.4 6.6 8.38 8.38 % % 51 1.1 16.00 2.2
Jurickson Profar
H TEX @ LAD 36% 3.38 Maeda, R 3.61 B 0.235 0.323 0.199 0.00 0.0 0.00 5 6600 20.8 7.3 6.18 6.18 % % 50 0.9 10.00 1.5
Adrian Beltre
H TEX @ LAD 36% 3.38 Maeda, R 3.61 R 0.311 0.343 0.106 0.00 0.0 0.00 4 6100 16.3 6.3 6.38 6.38 % % 61 1 15.00 2.5
Enrique Hernandez
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.214 0.306 0.207 0.00 0.0 0.00 4 5800 18.4 4.6 6.92 6.92 % % 38 1.2 7.00 1.2
Delino DeShields
H TEX @ LAD 36% 3.38 Maeda, R 3.61 R 0.222 0.285 0.083 0.00 0.0 0.00 2 5600 17.8 7.1 5.98 5.98 % % 59 1.1 2.00 0.4
Robinson Chirinos
H TEX @ LAD 36% 3.38 Maeda, R 3.61 R 0.198 0.310 0.192 0.00 0.0 0.00 7 5100 17.9 6.1 3.75 3.75 % % 42 0.7 0.00
Rougned Odor
H TEX @ LAD 36% 3.38 Maeda, R 3.61 L 0.216 0.262 0.086 0.00 0.0 0.00 8 5000 12.3 5.0 3.18 3.18 % % 54 0.6 7.00 1.4
Austin Barnes
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.223 0.314 0.075 0.00 0.0 0.00 8 4700 11.7 3.4 3.65 3.65 % % 41 0.8 0.00
Logan Forsythe
H LAD vs TEX 64% 4.62 Hamels, L 3.86 R 0.200 0.254 0.109 0.00 0.0 0.00 7 4300 15.9 4.6 4.41 4.41 % % 38 1 10.00 2.3
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $50,000 if left blank.

FLEX Position

Hitters vs Pitcher

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
NYM
@
ATL
TOR
@
TB
CHC
@
MIL
BOS
@
BAL
PIT
@
ARI
LAA
@
SEA
WSH
@
NYY
COL
@
PHI
MIN
@
DET
SF
@
MIA
CLE
@
CWS
CIN
@
KC
SD
@
STL
HOU
@
OAK
TEX
@
LAD
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team (otherwise known as stacking) this is where to do it. This only applies to Hitters, and you can add a single stack with the remaining hitters not needing to be from the same team, or you can add multiple stacks per lineup so that all of the hitters are paired with other hitters from the same team.

To get started, click on the Add Stack link. You will need to select which teams you would like possibly used for the first stack. You can pick as many teams as you wish. You then will need to select a stack size, which is the number of hitters used from one of the selected teams.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 batters from 1 team, and 4 batters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.