Draftkingspickem - MLB
2018-05-16
Filter Players
Apply filters
Batting Order
Projected Score
Salary
Value
Consistency
  • Pitchers
  • Hitters
  • ALL
  • T1
  • T2
  • T3
  • T4
  • T5
  • T6
  • All
  • My Pool
  • Excluded Players
  • Locks
  • Injuries
All
None
My Projections
Add Selected to Group
Create New Group
Pos Team Opp Win % Runs vs. Pitcher Hand ERA/AVG wOBA ISO Avg innings K/9 WHIP Order Salary Ceiling Avg FC Proj My Proj
Exp.
Used
Con. Value Actual Score Actual Val
Manny Machado
T1 BAL vs PHI 50% 5.25 TBD R 0.353 0.460 0.307 0.00 0.0 0.00 3 100 36.3 11.2 15.60 15.60 % % 54 156 0.00
Odubel Herrera
T2 PHI @ BAL 50% 5.25 TBD L 0.360 0.428 0.201 0.00 0.0 0.00 3 100 29.8 9.5 13.80 13.80 % % 58 138 3.00 30
Rhys Hoskins
T2 PHI @ BAL 50% 5.25 TBD R 0.268 0.392 0.205 0.00 0.0 0.00 2 100 27.8 8.6 13.64 13.64 % % 59 136.4 7.00 70
Maikel Franco
T3 PHI @ BAL 50% 5.25 TBD R 0.274 0.341 0.226 0.00 0.0 0.00 6 100 28 7.9 10.14 10.14 % % 44 101.4 5.00 50
Jonathan Schoop
T5 BAL vs PHI 50% 5.25 TBD R 0.239 0.268 0.102 0.00 0.0 0.00 4 100 24.1 6.6 11.44 11.44 % % 52 114.4 0.00
Trey Mancini
T5 BAL vs PHI 50% 5.25 TBD R 0.280 0.347 0.173 0.00 0.0 0.00 1 100 24.5 7.8 11.14 11.14 % % 57 111.4 4.00 40
Cesar Hernandez
T6 PHI @ BAL 50% 5.25 TBD B 0.262 0.352 0.131 0.00 0.0 0.00 1 100 25.4 8.4 12.36 12.36 % % 61 123.6 24.00 240
Jose Abreu
T4 CWS @ PIT 36.4% 3.40 TBD R 0.296 0.370 0.211 0.00 0.0 0.00 3 100 24.7 8.4 8.20 8.20 % % 51 82 3.00 30
Corey Dickerson
T4 PIT vs CWS 63.6% 4.61 TBD L 0.329 0.379 0.201 0.00 0.0 0.00 5 100 23.3 9.4 9.50 9.50 % % 63 95 7.00 70
Francisco Lindor
T1 CLE @ DET 66.7% 5.34 TBD B 0.315 0.422 0.297 0.00 0.0 0.00 4 100 36.2 11.3 17.15 17.15 % % 58 171.5 7.00 70
Jose Ramirez
T1 CLE @ DET 66.7% 5.34 TBD B 0.288 0.412 0.314 0.00 0.0 0.00 3 100 34.2 10.7 16.17 16.17 % % 58 161.7 7.00 70
Tommy Pham
T1 STL @ MIN 48.8% 4.69 TBD R 0.308 0.414 0.225 0.00 0.0 0.00 1 100 30 9.8 12.75 12.75 % % 56 127.5 19.00 190
Eddie Rosario
T2 MIN vs STL 51.2% 4.81 TBD L 0.284 0.357 0.264 0.00 0.0 0.00 3 100 29.4 9.7 11.17 11.17 % % 53 111.7 13.00 130
Jedd Gyorko
T4 STL @ MIN 48.8% 4.69 TBD R 0.308 0.430 0.269 0.00 0.0 0.00 6 100 23.7 7.2 7.70 7.70 % % 44 77 5.00 50
Josh Donaldson
T5 TOR @ NYM 55.6% 3.72 TBD R 0.239 0.333 0.207 0.00 0.0 0.00 2 100 25.9 8.3 9.42 9.42 % % 50 94.2 13.00 130
Michael Conforto
T6 NYM vs TOR 44.4% 3.29 TBD L 0.208 0.316 0.135 0.00 0.0 0.00 4 100 17.6 6.3 6.23 6.23 % % 55 62.3 0.00
Mike Moustakas
T3 KC vs TB 50% 4.75 TBD L 0.305 0.371 0.234 0.00 0.0 0.00 3 100 26.8 8.9 10.82 10.82 % % 55 108.2 4.00 40
Whit Merrifield
T4 KC vs TB 50% 4.75 TBD R 0.287 0.343 0.140 0.00 0.0 0.00 5 100 21.9 8.8 9.17 9.17 % % 64 91.7 5.00 50
Salvador Perez
T5 KC vs TB 50% 4.75 TBD R 0.241 0.305 0.217 0.00 0.0 0.00 4 100 23.5 8.5 9.68 9.68 % % 59 96.8 0.00
Christian Yelich
T3 MIL @ ARI 48.3% 4.17 TBD L 0.298 0.353 0.141 0.00 0.0 0.00 2 100 24.6 8.2 9.82 9.82 % % 55 98.2 16.00 160
Travis Shaw
T3 MIL @ ARI 48.3% 4.17 TBD L 0.242 0.346 0.248 0.00 0.0 0.00 4 100 24.5 7.9 9.94 9.94 % % 54 99.4 23.00 230
Paul Goldschmidt
T3 ARI vs MIL 51.7% 4.33 TBD R 0.213 0.322 0.160 0.00 0.0 0.00 4 100 23 6.9 10.05 10.05 % % 53 100.5 0.00
David Peralta
T6 ARI vs MIL 51.7% 4.33 TBD L 0.289 0.377 0.211 0.00 0.0 0.00 1 100 25 8.5 8.94 8.94 % % 53 89.4 0.00
Nomar Mazara
T4 TEX @ SEA 47.6% 4.14 TBD L 0.294 0.377 0.238 0.00 0.0 0.00 4 100 25.6 8.5 9.74 9.74 % % 53 97.4 0.00
Mitch Haniger
T4 SEA vs TEX 52.4% 4.36 TBD R 0.303 0.412 0.290 0.00 0.0 0.00 3 100 27.5 9.8 9.75 9.75 % % 55 97.5 3.00 30
Dee Gordon
T5 SEA vs TEX 52.4% 4.36 TBD L 0.325 0.330 0.088 0.00 0.0 0.00 1 100 25.4 8.7 9.38 9.38 % % 54 93.8 3.00 30
Ryon Healy
T5 SEA vs TEX 52.4% 4.36 TBD R 0.278 0.374 0.311 0.00 0.0 0.00 5 100 27.9 9.6 8.44 8.44 % % 49 84.4 2.00 20
Delino DeShields
T6 TEX @ SEA 47.6% 4.14 TBD R 0.267 0.324 0.111 0.00 0.0 0.00 1 100 22 8.3 8.86 8.86 % % 61 88.6 11.00 110
Scooter Gennett
T5 CIN @ SF 40% 3.56 TBD L 0.323 0.371 0.181 0.00 0.0 0.00 2 100 25.6 7.8 8.38 8.38 % % 45 83.8 21.00 210
Adam Duvall
T6 CIN @ SF 40% 3.56 TBD R 0.182 0.289 0.212 0.00 0.0 0.00 4 100 21.3 6.0 7.40 7.40 % % 42 74 21.00 210
Cody Bellinger
T2 LAD @ MIA 63.6% 4.61 TBD L 0.260 0.332 0.200 0.00 0.0 0.00 5 100 21.9 7.3 9.88 9.88 % % 59 98.8 9.00 90
J.T. Realmuto
T4 MIA vs LAD 36.4% 3.40 TBD R 0.322 0.400 0.222 0.00 0.0 0.00 2 100 23.2 9.0 6.34 6.34 % % 53 63.4 14.00 140
Yasiel Puig
T4 LAD @ MIA 63.6% 4.61 TBD R 0.216 0.269 0.108 0.00 0.0 0.00 8 100 15.8 6.1 4.82 4.82 % % 55 48.2 0.00
Starlin Castro
T5 MIA vs LAD 36.4% 3.40 TBD R 0.284 0.311 0.084 0.00 0.0 0.00 3 100 17.3 6.9 5.86 5.86 % % 58 58.6 18.00 180
Justin Bour
T6 MIA vs LAD 36.4% 3.40 TBD L 0.235 0.366 0.219 0.00 0.0 0.00 4 100 20.1 6.8 6.25 6.25 % % 49 62.5 20.00 200
Joc Pederson
T6 LAD @ MIA 63.6% 4.61 TBD L 0.207 0.293 0.092 0.00 0.0 0.00 2 100 17.8 4.3 8.59 8.59 % % 47 85.9 7.00 70
Chase Utley
T6 LAD @ MIA 63.6% 4.61 TBD L 0.218 0.288 0.103 0.00 0.0 0.00 1 100 18 4.4 8.02 8.02 % % 43 80.2 3.00 30
Mookie Betts
T1 BOS vs OAK 71% 4.96 TBD R 0.349 0.478 0.390 0.00 0.0 0.00 1 100 39.6 13.3 15.77 15.77 % % 55 157.7 8.00 80
J.D. Martinez
T2 BOS vs OAK 71% 4.96 TBD R 0.344 0.430 0.287 0.00 0.0 0.00 4 100 30.1 10.3 14.35 14.35 % % 62 143.5 20.00 200
Rafael Devers
T3 BOS vs OAK 71% 4.96 TBD L 0.250 0.310 0.181 0.00 0.0 0.00 8 100 21.4 7.4 5.95 5.95 % % 48 59.5 0.00
Eduardo Nunez
T4 BOS vs OAK 71% 4.96 TBD R 0.233 0.264 0.123 0.00 0.0 0.00 7 100 17.3 5.9 5.81 5.81 % % 51 58.1 3.00 30
Khris Davis
T5 OAK @ BOS 29% 3.04 TBD R 0.218 0.329 0.267 0.00 0.0 0.00 4 100 22.7 8.4 6.65 6.65 % % 52 66.5 2.00 20
Jed Lowrie
T5 OAK @ BOS 29% 3.04 TBD B 0.329 0.401 0.228 0.00 0.0 0.00 3 100 21.8 9.4 6.65 6.65 % % 60 66.5 4.00 40
Matt Olson
T6 OAK @ BOS 29% 3.04 TBD L 0.231 0.316 0.150 0.00 0.0 0.00 6 100 18 6.7 4.25 4.25 % % 49 42.5 17.00 170
Marcus Semien
T6 OAK @ BOS 29% 3.04 TBD R 0.271 0.309 0.105 0.00 0.0 0.00 1 100 18.8 7.8 5.74 5.74 % % 58 57.4 19.00 190
Freddie Freeman
T1 ATL vs CHC 51.5% 4.83 TBD L 0.318 0.426 0.247 0.00 0.0 0.00 3 100 31.6 10.6 13.62 13.62 % % 58 136.2 12.00 120
Ozzie Albies
T1 ATL vs CHC 51.5% 4.83 TBD B 0.278 0.371 0.306 0.00 0.0 0.00 1 100 32.2 11.3 13.21 13.21 % % 58 132.1 17.00 170
Kris Bryant
T1 CHC @ ATL 48.5% 4.67 TBD R 0.287 0.425 0.287 0.00 0.0 0.00 2 100 31.8 10.2 14.33 14.33 % % 57 143.3 13.00 130
Anthony Rizzo
T2 CHC @ ATL 48.5% 4.67 TBD L 0.202 0.306 0.168 0.00 0.0 0.00 3 100 29 8.1 13.33 13.33 % % 52 133.3 0.00
Javier Baez
T2 CHC @ ATL 48.5% 4.67 TBD R 0.273 0.380 0.344 0.00 0.0 0.00 5 100 32.1 10.8 11.61 11.61 % % 53 116.1 3.00 30
Nick Markakis
T3 ATL vs CHC 51.5% 4.83 TBD L 0.331 0.399 0.187 0.00 0.0 0.00 4 100 26.3 9.6 11.44 11.44 % % 61 114.4 4.00 40
Ronald Acuna
T3 ATL vs CHC 51.5% 4.83 TBD 0.263 0.362 0.237 0.00 0.0 0.00 2 100 26.5 8.8 11.03 11.03 % % 56 110.3 10.00 100
Kyle Schwarber
T4 CHC @ ATL 48.5% 4.67 TBD L 0.259 0.378 0.233 0.00 0.0 0.00 6 100 25.3 8.1 9.28 9.28 % % 51 92.8 0.00
Willson Contreras
T4 CHC @ ATL 48.5% 4.67 TBD R 0.288 0.378 0.230 0.00 0.0 0.00 4 100 29.5 8.3 11.03 11.03 % % 44 110.3 7.00 70
Addison Russell
T5 CHC @ ATL 48.5% 4.67 TBD R 0.244 0.313 0.110 0.00 0.0 0.00 7 100 18.8 6.1 6.05 6.05 % % 48 60.5 5.00 50
×
Save As
Name is invalid.
Load Settings
Save Name Last Saved Delete
No saved settings found
Load Settings Please select a save file.
Unique Players

Team Salary
Max salary is $800 if left blank.

Hitters vs Pitcher

Global Exposure Setting
apply exposure as

Randomness
Use Randomness
Players Per Team Change All MAX
MIN MAX MIN MAX
PHI
@
BAL
CWS
@
PIT
CLE
@
DET
STL
@
MIN
TOR
@
NYM
TB
@
KC
MIL
@
ARI
TEX
@
SEA
CIN
@
SF
NYY
@
WSH
NYY
@
WSH
OAK
@
BOS
LAD
@
MIA
CHC
@
ATL
HOU
@
LAA
Add Stack (you can add up to 3) Click here for more info

If you want to create lineups with players from the same team (otherwise known as stacking) this is where to do it. This only applies to Hitters, and you can add a single stack with the remaining hitters not needing to be from the same team, or you can add multiple stacks per lineup so that all of the hitters are paired with other hitters from the same team.

To get started, click on the Add Stack link. You will need to select which teams you would like possibly used for the first stack. You can pick as many teams as you wish. You then will need to select a stack size, which is the number of hitters used from one of the selected teams.

If you want, you can add a 2nd and 3rd stack the same way as above. This is how you can create a lineup with 4 batters from 1 team, and 4 batters from another.

Positional Stacking
Create New Stacking Rule
Stack with of Positions From
Stacking Rules
Save Name Last Saved Delete
No saved settings found
Load Groups There was an error loading your groups.
×
Save As Name is invalid.
×
Load Playerpool
Save Name Last Saved
No Saved playerpools found
Selected  
Load Playerpool Please select a save file.
×
Load Saved Crunches
Name Number of Teams Last Saved Delete
Name Number of Teams
  1. Take a tour

    Check out the features of Lineup Rewind.

  2. Sport Selection

    Select a sport (NBA, NFL) from this drop down menu.

  3. Site Selection

    Select a site (Fanduel, Draftkings etc.) from this drop down menu.

  4. Game Filter

    Use the Game Filter to remove any games you dont want to use. Useful for contests like Late Night NBA, or Sun/Mon night NFL.

  5. Score filter

    Select between projected score and actual scores from the day.

  6. Calculate Teams

    Hit 'calculate' to have Fantasy Cruncher create the best teams based on the actual data.

  7. Tour End

    Thanks for checking out the tour! If you want to use this tool to crunch numbers for fresh games, use lineup cruncher instead! If you have any more questions, check out our tutorials, browse the forums, or send us a message at support@fantasycruncher.com.